BANYAN Eco Wall – The World’s First Fully 3D Printed, Irrigated Green Wall

BigRep is proud to present the BANYAN Eco Wall, the world’s first fully additively manufactured (AM) green wall with naturally integrated drainage and irrigation systems. The prototype features unprecedented innovations in design, functionality, technology and size, made possible with the BigRep ONE’s large-format additive printing process.

Designed at NOWLAB, BigRep’s innovation consultancy, by Mirek Claßen, Tobias Storz and Lindsay Lawson, the project features liquid channels that have been integrated into the manufacturing process. Similar vertical-farm structures have required channels to be manually embedded into the design in a complicated process after manufacturing with metal piping and a variety of other parts. The BANYAN, on the other hand, is 3D printed with internal channels included in the design. This allows for ultimate design freedom, as the eco wall’s structure doesn’t need to be planned around the available materials to create channels in post-production. These drainage systems are vital for the proper function of the integrated irrigation system, as excess water must be removed.

Irrigation systems, implemented to provide a controlled supply of water at requisite intervals, ensure the unique needs of plants and crops are met without the need for human intervention. Systems such as this inspire interior designers and architects developing a greener future – from home or workspace plant walls and green facades to vertical gardens and other forms of urban farming.

<a style = "font-weight: bold; color: #E7E7E7"  href="/wp-content/uploads/2019/06/Eco_Wall-drip2.jpg" download><i class="fa fa-download"></i> Download </a>

Inspired by the multipurpose properties of plants’ root, steam and leave systems, the design of the BANYAN Eco Wall takes advantage of biomimicry design to create a structure that simultaneously functions as a support structure and water supply system. Its bionic design, measuring 2000 x 2000 x 600 mm, goes beyond aesthetics to be structurally optimized with plant carriers that easily and organically snap into place. The small internal channels are designed for optimal water flow and feature an integrated “micro shower” mechanism to irrigate plants precisely where needed.

“Our BANYAN Eco Wall is adopting nature’s principle with a complex, smart, and elegant design only achievable with AM. Traditional technologies such as milling or injection molding cannot deliver this level of complexity and dual functionality,” explains BigRep CEO Stephan Beyer, PhD. “For the first time, thanks to AM and advanced CAD software, it is now possible to create complex functional designs within a fully digitized process chain.”

BigRep CIO and NOWLAB Managing Director Daniel Büning adds, “Generative design software was crucial in the creation of the BANYAN Eco Wall to optimize the structure for printability and stability while allowing a rapid iterative design process. This prototype will push the boundaries of AM not only in irrigated plant systems, such as in vertical farming and green facades, but for any application requiring embedded functionalities.”



Find out what large-format 3D printing can do for you
in our free Guide to Integrate Large-Format!
Read Now


The BANYAN ECO WALL at a glance:
Dimensions: 2000 x 2000 x 600 mm, made up of 4 segments
Materials: BigRep Berliner Weisse Pur PETG for overall structure; BigRep Black PRO HT for planters
Team: Daniel Büning, BigRep CIO and NOWLAB Co-Founder
Lead Designers – Mirek Claßen, Tobias Storz, Lindsay Lawson

SHOP BIGREP FILAMENTS

Want to stay up to date on the latest BigRep news? Subscribe to our newsletter and be the first to know or request a demo.

We Lifted the BigRep ONE with a 3D Printed Carabiner

The BigRep ONE beeing lifted with a 3D Printed CArabiner

Michel David, Special Projects Manager at BigRep, had printed a few carabiners at home with his family on their small desktop 3D printer. They’re useful, he said, for hanging things, or for clipping a bicycle helmet to a backpack.

He then wanted to try and 3D print a super-sized carabiner and see if it is strong enough to lift very heavy objects. With the BigRep ONE having a 1m3 volume build, the challenge wasn’t going to be printing the large carabiner – rather, it would testing the strength of BigRep’s filaments!

“I started printing carabiners in large size, to see how strong they are,” said David. “We were testing holding heavy things with it, then Johann suggested we try lifting one of our own BigRep ONE printers.”

So, a plan was hatched. One of the older BigRep ONE machines, which BigRep was gifting to a university, would be the load borne by one of the carabiners. David and the team calculated that a certain thickness of BigRep PLA would be able to lift up to 1000 kg off the ground.

The team bought the 3D model design from ddf3d.com and they customized it for BigRep’s use. It was printed in eight hours, using 25% infill and a wall thickness of 6 mm.

BigRep connected with a prototyping space in Berlin-Kreuzberg called MotionLab, which had the room and giant crane necessary to complete the feat.

The aim was to lift it 15 cm or so, in safe conditions with padding beneath each corner of the printer, so as to cushion a possible, yet unlikely, fall. All BigRep and MotionLab staff involved were standing by, all kitted out with helmets.

Then, the grand finale. Drumroll, please…

Our 3D printed Carabiner

The BigRep PLA carabiner lifted the 332.9 kg machine, then the team added more weight to the printer to make it 507 kg and it held, comfortably. As David had predicted, the BigRep PLA stayed strong and did the BigRep team proud. We highly recommend watching the video of the lift for the full effect.

Thanks again to all those involved, especially to MotionLab for the use of their facility and equipment!

Check out our BigRep PLA Filament

World-first 3D Printed Airless Bicycle Tire

3D Printed Airless Bicycle Tire

We’ve taken to the streets with our latest innovation, and are pleased to present the world’s first 3D-printed, full-scale airless bicycle tire. BigRep Product Designer Marco Mattia Cristofori shares with us how he used the flexible properties of the company’s new Pro FLEX filament to bring the tire prototype to life. We even captured him taking the tire out for a test spin through the streets of Berlin. You can see it in motion in the video below.

"We were able to replace ‘air’ as a necessity in the tire by customizing the pattern to be one of a three-layered honeycomb design. Based on the same principle, the design can be altered to fit the requirements of specific kinds of biking, such as mountain biking and road racing, or for different weather and speed conditions. Perfecting the design is the trickiest part," says Cristofori. Even small changes to the infill percentage or pattern can lead to different results in terms of weight and performance.

Printed on the BigRep ONE large-scale 3D printer, the tire prototype utilizes the full potential of BigRep’s latest filament: Pro FLEX. What separates the Pro FLEX from other 3D printing filaments is its unique flexible properties, coupled with high temperature resistance and durability. The rigidity and the internal pattern, known as the infill, can be controlled and customized to suit different weather conditions or terrain. The current tire prototype uses a three-layered honeycomb pattern adapted for urban use.

The main advantage of airless tires as opposed to your average run-of-the-mill tires is that they simply never go flat. Once a luxury, airless tires are now looking to become standard practice in the transportation world. This is not BigRep’s first foray into the mobility world – BigRep has worked on a wide range of automotive, aerospace and transportation projects for such clients such as Aerobus, BMW, Deutsche Bahn, Etihad and Nissan. Following a recent blog post in which we showcased the high-temperature resistant wheel rim, BigRep’s portfolio of use cases continues to expand. It is also possible to print a fully-functioning bicycle frame on the BigRep ONE – as engineers of Aalborg University demonstrated in a recent project.

Since the release of the airless bicycle tire video, the TPU-based tire has received coverage from around the globe, such as on online news sites Inhabitat and CNET. With more projects in the works, we’re delving right into prototyping for the mobility, automotive, aerospace and other industries, so stay tuned for more news in the coming weeks.

Shifting gear into 3D print mode: How Paravan cut production costs by 75% with the BigRep ONE

Paravan modified car

Vehicle customization company Paravan is a leading international provider of vehicle adaptations for people with a disability or special needs. With their personalized, road-approved, safety-related industrial applications, Paravan doesn’t just deliver car parts from its industrial mobility park in Germany – they offer mobile freedom to those who need it most.

Their solutions are specifically tailored to individual medical needs, incorporating features such as wheelchair access, loading systems, rotating seating, and many more accessibility assets for safety and comfort. Providing such highly tailored automotive components requires a great deal of time consulting, designing, prototyping and installing, to ensure the components work as they should. This makes time and resource savings even more valuable.

BigRep is pleased to be a part of making those savings a reality. Now working with a BigRep ONE, Paravan can rely on large-volume 3D printing technology, instead of depending on older, time-intensive processes to deliver parts.

“With the BigRep ONE, we can quickly and inexpensively print complex components that are either impossible or very difficult to produce by machine,” said Mario Kütt, Head of Mechanical Construction at Paravan, when we spoke with him about how the BigRep ONE is shifting how they produce parts. “Now we print a component that we had previously milled, thereby saving around 75% of the costs.”

In addition to saving 75% on production costs, Paravan is also producing its prototypes almost 50% faster using 3D printing than with traditional methods. One such prototype the Paravan team has printed is a revolutionary new steering mechanism. Unlike in most cars, this Paravan steering wheel is electronic, rather than being directly connected to the steering column. The specialist automotive company designed their own cover for the steering wheel using the BigRep ONE 3D printer.

Custom grips, created from 3D scans, are another example of the kinds of custom parts that Paravan prints with the BigRep ONE large-scale 3D printer. “We have had the printer for a good year, and together with a 3D scanner, our construction engineers work with it daily,” said Alexander Nerz, Paravan’s Head of Marketing & PR. “It’s great to be able to quickly and efficiently build designs overnight... to be able to install the piece into the customer’s vehicle the very next day. It’s a really great tool.”

For more information on how Paravan is using 3D printing to change the way they produce their innovative industrial applications:

Want to Learn More About Paravan's Cost Saving Vehicle Customization Process?

Paravan has been a leading international provider of vehicle adaptations for people with a disability or special needs. In addition to saving 75% on production costs, they produce prototypes nearly 50% faster with 3D printing compared with traditional methods. Don't miss out, watch the webinar now:

3D PRINTING SHIFTS PARAVAN’S LIFE-CHANGING VEHICLE CUSTOMIZATION
.

APPLY NOW
close-image
Cookie Consent with Real Cookie Banner