Symbiosis of Art and Technology Through Large-Format 3D Printing

Large-format 3D printed art sculpture by Welly Fletcher

US contemporary artist Welly Fletcher builds a bridge to prehistoric cave art with a Large-Format 3D printed sculpture made with the BigRep ONE.

40,000 years ago, cave-dwelling Homo sapiens carved out a sculpture of a lion man into an ivory tusk using primitive chisels and tools.

The sculpture, which was discovered almost 100 years ago in a cave in south Germany, remains the earliest known example of Homo sapien art - and serves as a stark reminder of the extraordinary cognitive traits which have allowed our species to develop societies, religions, and technologies.

After experiencing the prehistoric sculpture in the Museum of Ulm in Germany firsthand, Albuquerque-based artist Welly Fletcher was inspired to create a sculpture for their latest exhibition SLANT at the Richard Levy Gallery in New Mexico. The sculpture explores the historic symbiosis of art, technology, and our species' kinship with animals.

Adding 3D Printing to the Palette

Fletcher’s sculptural centerpiece ‘Trans Time’, measuring 0.9 × 2.1 × 0.7 mts (36 × 86 × 28 inches), is an abstract depiction of a lion-like animal printed using the large-format BigRep ONE 3D printer.

Beginning as a clay model produced by the artist, the piece underwent a transformative journey as it was digitally scanned before emerging as a 3D printed object, made using the University of New Mexico’s Art Lab BigRep ONE 3D printer.

“The more I learned and experimented with the 3D printer, the more magical the results became. The printer gave both myself and my students the chance to understand the process behind translating analog techniques into digital.”

commented Fletcher, who teaches sculpture and digital technology at the University of New Mexico.

Trans Time, a large format 3D printed sculpture by Welly Fletcher printed on the BigRep ONE

Paying homage to the manner in which the original Lion Man sculpture is presented in the Museum of Ulm in Germany, Fletcher’s 3D printed animal head sculpture sits proudly upon an outline of a steel animal skeleton, which itself is fixed to a plasma-cut steel base.

While the orange-coloured sculpture is both visually and physically impressive in its proportions, Fletcher's deliberate choice of BigRep's PLA bioplastic aligned perfectly with the exhibition's theme of human-animal kinship and the body’s resistance to the environmental destruction of our species. Perhaps most significantly, the absence of carbon processes and toxic oils in PLA enhances the narrative of the artwork, further emphasizing our species' complicated relationship with the planet.

“When I started reading about the non-carbon-based processes of PLA, I was even more convinced of its ability to reinforce the environmental aspect of my work”

added Fletcher, who recently added the malleable bioplastic to her palette of materials.

Large-Format 3D Printing for Sizeable Sculptures

Trans-Time-a-3D-printed-sizeable-sculptures-by-Welly-Fletcher-at-the-exhibition-SLANT-at-the-Richard-Levy-Gallery-in-New-Mexico

Fletcher was also eager to highlight the practical benefits of incorporating the BigRep ONE printer into their artistic process.

Where traditionally, artists and their teams face numerous logistical hurdles in the transportation and in the assembly of separate heavy pieces; the BigRep ONE 3D printer enabled Fletcher to print the entire Trans Time sculpture as a unified whole, thus minimizing the complexity of production and assembly.

Describing the experience as transformative, Fletcher emphasized how the seamless printing of the entire sculpture marked a significant shift in their artistic process.

While the original cave sculpture stands as a testament to the imaginative prowess of early Homo sapiens, the primitive tools of that era made its production a complex and time-consuming task, with some estimates suggesting it could have taken a group of humans around 400 hours to complete.

Welly-Fletcher-and-her-sculpture-TRANS-TIME-at-her-exhitbition-SLANT-at-the-Richard-Levy-gallery

Thanks to BigRep ONE, however, contemporary artists now have the ability to effortlessly produce much larger and more complicated forms at the touch of a button - a sentiment that further underlines the enduring alchemy of the medium of sculpture.

“3D printing grants artists working with sculpture a significant advantage. It enables the creation of objects that simply aren't feasible by hand. Witnessing the final object materialize before your eyes has a magical quality to it.””

Fletcher elaborated.

Analog Roots in a Digital World

Welly_Fletcher_Blog_1_magnificed_V3

There’s a comforting circularity associated with Fletcher’s Trans Time sculpture. On one hand, its prehistoric connotations draw our attention to the elasticity of time and the prevalence of human creativity. On the other hand, we’re reminded of the powerful symbiosis between art and technology, and, ultimately, are left with an overwhelmingly positive impression of our species thanks to the sculpture’s use of eco-friendly materials.

With digital technologies such as 3D printing proving invaluable to the field of sculpture, Fletcher’s advice to artists wanting to incorporate 3D printing into their work is simple: let the process inform the results.

Want to Learn More About Large-Format 3D Printing Applications in Exhibitions?

Whether it's fine art, museum displays, or innovative installations, BigRep 3D printers are essential for large-scale creative projects.

3d-printed-exhibition-displays

Unlimited Creativity in 3D Printed Exhibitions

  • Your imagination is the only limit to what you can create with a 1m3 building volume of BigRep 3D printers
  • Keep on schedule to manage tight deadlines by avoiding manual labor and outsourcing
  • 3D printing can reduce costly material waste and replace expensive skilled labor

About the author:

Patrick McCumiskey <a style="color: #0077b5" href="https://de.linkedin.com/in/patrick-mccumiskey-b41a2699" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Patrick McCumiskey

Author

Patrick has over a decade’s worth of experience writing about design and technology. After first encountering 3D printing on a project while studying a Masters Degree in design, he’s taken a keen interest in the development of 3D printing and its impact on the world of design and tech.

3D Printing Powers Wind Turbine Research at TU Berlin

On average, wind turbine blades are a massive 80 meters long. When it comes to reengineering these towering blades, no other technology offers the freedom, precision, and adaptability to scale parts quite like 3D printing. While replicating them in a university lab might be near impossible, a scaled prototype with 1 meter blades is very much in the wheelhouse of a large-build volume 3D printer. Here, researchers go big by starting small.

Based on 3D-printed rotor blades, TU Berlin offers a course - Wind Turbine Measurement Techniques that imparts skills to measure the performance of the blades at different operating points. The students learn how to gauge the speed of the wind while at the same time assess the power generated by the turbine. The course revolves around comparing the performance of a traditionally made, hand-carved, 2 meter wooden blade with a 3D-printed 1 meter rotor blade with the gyroid infill.

The additively manufactured blade is the fruit of the research conducted by a Ph.D. and a Master’s student of TU Berlin, Jörg Alber, and Laurin Assfalg , respectively. During the study, they discovered that with 3D printing, experimenting with different infills, shapes, and materials, the sky's the limit.

Laurin Assfalg:

"3d printing was a compelling option to produce the rotor blades as it can create complex forms and enhance performance. The idea was to come up with the science that can somehow be used for big rotor blades too."

3D Printing Breathes Life into the Blades

The research's objective was to find alternative ways to fabricate wind turbine rotor blades. By creating and optimizing rotor blades on a smaller scale with 3D printing, Jörg Alber and Laurin Assfalg sought to develop insights that could be useful for additively manufacturing life-sized full-scale rotor blades in the future.

The conventional way of creating wind turbine rotor blades is through subtractive methods such as hand-carved wood, computerized milling, or molding. These processes, although time tested and well established as the gold standard in the wind turbine industry, weren’t an ideal choice for the research as these blades don’t allow customizable complex structures needed for testing. Their decision to design and produce the 3D-printed blade was the technology’s ability to create more intricate forms and infills (the internal structure of a 3D-printed part) compared to traditional subtractive methods.

3D Pinted Wind Turbine Blades for TU Berlin Research

3D printing offered efficiency in printing the blades and could easily accommodate a wide range of shapes and structures that would eventually be subjected to rigorous testing. The size of rotor blades to be printed were 1 meter in length which made the large-format industrial BigRep ONE the perfect choice. The one-cubic-meter build volume BigRep ONE is designed to manufacture massive 3D prints for the most demanding and geometrically complex applications. Housed at the maker space of the TH Wildau, the BigRep ONE produced the blades in a single seamless print, the entirety of the blades was printed horizontally without any support in less than a day.

For the design, the blades were developed using freely available intelligent software and BigRep’s BLADE. The vital settings for the print like the printing direction, layer height, wall thickness, infill structure (gyroid), and infill density were easily customizable on the BLADE software. The open access principles 3D printing is based on were yet another reason that made additive manufacturing a compelling choice in the framework of a low-budget university project.

Structural Considerations: Infill and Material

The structural design of the wind turbine blades was based on both the study of different infill structures and 3D printing material.

1. Gyroid Infill

Components such as wind turbine blades often experience a constantly changing load because of aerodynamic and inertial forces during rotation. After extensive infill research, gyroid’s isotropic properties made them an obvious choice as they endure loads that constantly fluctuate.

Gyroid Infill

The gyroid infill is made of a complex network of twisted and interconnected tubes forming a repeating pattern that extends infinitely in all directions without intersecting or overlapping. The result is a continuous lattice structure resulting in extraordinary stability at very low density which were the mainstays necessary for lightweight rotor blades. While designing this complex pattern manually might take ages, 3D printing software simplified the process automatically and implemented it in the rotor blades.

Wind Turbine Blade with Gyroid Infill
The rotor blade’s gyroid infill printed by the BigRep ONE at the maker space of TH Wildau.

Apart from its strength, gyroid infill is also known for its material efficiency. Because of the interconnected channels, it reduces material usage without compromising structural integrity. This aspect was a huge advantage while printing the blades which might have otherwise ended up being heavy and consumed a substantial amount of material.

2. BigRep’s Industrial Grade PRO HT

The research team printed the rotor blades with PRO HT as it checked the boxes: easy to print, high strength, and has the ability to withstand high temperatures. The user-friendly filament doesn’t warp often and delivered aesthetic prints with a smooth matte finish.

BigRep Filaments group

The team also considered the ecological footprint of the blades, and the industrial grade PRO HT being a biopolymer, has a reduced environmental impact when compared to filaments derived from fossil fuels.

Putting the Blades to the Test

Testing the 3D-printed blades involved structural and wind tunnel tests to evaluate how they hold up under a range of parameters.

1. Structural Testing

Researchers are checking their data

The prototype rotor blades were exposed to the ULCs (Ultimate Load Cases) with the Universal Testing Machine (UTM) at HTW Berlin.

Ultimate Load Cases (ULCs) encompass extreme loads applied during testing, while a Universal Testing Machine (UTM) is the device used to simulate or apply ULCs in structural testing. The machine evaluates how materials behave under controlled forces or strains.

What are Ultimate Load Cases (ULCs)?

The conditions under which a material or structure experiences the maximum anticipated load, stress, or forces it might encounter in the real world. By subjecting materials to these ULCs, you can gather data on how they behave under stressors which helps in the design and validation of the rotor blades for safety and reliability.

What is a Universal Testing Machine?

A Universal Testing Machine (UTM) is a device used to test the mechanical properties of materials or parts, such as tensile strength, compression, bending, and hardness. It applies controlled forces to the subject to measure how it responds under different conditions, providing valuable data for material analysis and quality assurance.

The stress tests analyzed potential damages within the 3D-printed shell like buckling and cracks when it was under certain forces. The ultimate root bending moments (maximum bending forces experienced at the root section of the rotor blade) were tested with point forces (concentrated forces exerted at specific areas) at three blade positions and in both bending directions. The blades were also tested under an intense centrifugal force of Fmax = 3000 N by a heavy-duty crane.

Despite the rigorous and thorough structural testing, the blade remained unscathed, reverting to its original shape, with absolutely no signs of cracks or buckling.

2. Wind Tunnel Tests

Wind Tunnel for the 3d printed rotor blade tests

To help the researchers find insights into the rotor blade’s aerodynamic efficiency, structural stability, and whether the wind turbine could extract wind energy, the wind tunnel tests were crucial. The tests simulated and analyzed the wind turbine blades in controlled aerodynamic conditions within the large closed-loop wind tunnel at the HFI of the TU Berlin.

Large Wind Tunnel

The wind turbine blades were designed to work best at a certain speed, but when they tested it, the researchers realized it worked better at a higher speed than what they had initially planned. Its maximum efficiency was at 5.4 times the speed of the wind, rather than the 4 times it was designed for. This was because the turbine was engineered based on natural wind flow, not the conditions inside the wind tunnel where it was tested.

The Future of Wind

The culmination of Laurin Assfalg and Jörg Alber’s research, the wind turbine with 1 meter 3D-printed rotor blades, currently resides at TU Berlin. It is the pillar of the course “Wind Turbine Measurement Techniques” and is a constant test subject for the experiments that determine what the future of harnessing wind energy might look like.

Apart from the enhanced performance of the 3D-printed blades, the study revealed other promising outcomes for the environment. The 3D-printed prototype blades produced for the Ph.D. thesis weren’t coated as part of the post-processing, so they can be easily recycled and upcycled. The research paves the way for further studies into enhancing the efficiency of wind turbines to harness clean, green, renewable wind energy.

Want to Learn More About Gyroid Infill?

Register to watch the on-demand webinar, The 3D-Printed Gyroid Improving Structurally Demanding Applications

Explore the innovative use of gyroid structures in wind turbine manufacturing and biomedical applications with expert Jörg Alber from TU Berlin. Don't miss out, watch the webinar now:

THE 3D-PRINTED GYROID: IMPROVING STRUCTURALLY DEMANDING APPLICATIONS

About the author:

Natasha Mathew <a style="color: #0077b5" href="https://www.linkedin.com/in/natasha-mathew/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Natasha Mathew

Copywriter

Natasha Mathew enjoys trying new things and one of them she’s currently obsessed with is 3D printing. Her passion for explaining complex concepts in simple terms and her knack for storytelling led her to be a writer. In her 7 years of experience, she has covered just about any topic under the sun. When she’s not carefully weighing her words, she’s reading, crafting, spinning, and adventuring. And when asked about herself, she writes in the third person.

Winds of Change for Vestas: 3D Printed Tooling Transforms Wind Turbines

3D printed tooling for vestas windmills.jpg

There aren’t a lot of technologies that can propel towering wind turbines to new heights of time and cost efficiencies, but large-format additive manufacturing rose to the challenge and delivered with its eclectic range of applications.    

Vestas, a global leader in sustainable energy solutions, designs, manufactures, installs, and services wind turbines across the globe. With more than 160 GW (billion watts) of wind turbines in 88 countries, the renewable energy giant has harvested more wind power than anyone else in the game.   

When Vestas needed to replace the jigs and fixtures that help construct their wind turbines, BigRep’s large-format additive manufacturing system was tasked to produce the tooling they needed. The everyday wear and tear of industrial work on traditional metal jigs and fixtures could deform tooling in ways that cause faulty construction. The BigRep STUDIO produced resilient plastic tooling that performed flawlessly and soon Vestas found more applications for the machine than what they had initially invested in.   

Ultra Precise Large-Scale Additive Tooling

Vestas' primary requirements were to create jigs and fixtures to position a vital component, the lightning protection system, within the wind turbine's blades. Accuracy is paramount because these blades endure constant inclement weather conditions and are highly susceptible to lightning strikes. The conventional approach is to use steel jigs and fixturing tools but they came with inherent limitations. These metal tools, although robust, faced challenges with deformation and undetectable damages.

lightening-protection-system-tooling-vestas

The plastic tooling, engineered through additive manufacturing, spelled remarkable advantages over its steel counterpart. Particularly, its lightweight properties, resistance to deformation, and unique ability to yield or break under stress. Fracturing under duress was paramount as these ensured faults were detectable early on which is critical in turbine assembly.

Transitioning from traditional steel tools to advanced polymer-based 3D-printed tooling was one of the highlights of this collaboration with BigRep. The modularity of the newly designed 3D-printed tool simplified Vestas' manufacturing processes, offering versatility to accommodate different configurations with a single adaptable design.

Vestas' tooling for the installation of the lightning protection system being 3D printed on the BigRep STUDIO.
Vestas' tooling for the installation of the lightning protection system being 3D printed on the BigRep STUDIO.

The switch to 3D printed tooling led to significant improvements in both efficiency and cost reduction. Vestas observed a remarkable three-week reduction in lead time and an impressive 72% cost reduction in manufacturing these crucial components. The tooling proved to be highly precise, lightweight, and surpassed traditional manufacturing's accuracy standards by holding measurements down to a couple of microns.  

The stability of High-Temp CF material used for the tools resists changes due to temperature and humidity fluctuations making them reliable. This in turn lowered costs, reduced carbon footprint, and eliminated additional transportation expenses associated with conventional manufacturing methods.

Jeremy Haight, Principal Engineer at Vestas:

"By having Additive Manufacturing in our pocket, we were able to flood the floor with quality tooling, by which we enable our regular production workers to do more of the important spot checks, which results in better quality."

Optimized Manufacturing Efficiency and Field Service Operations

The transition from physical to digital part inventory, enabled by 3D printing, delivered fundamental advantages for Vestas. Additive manufacturing excels in production on demand, small-scale production, and swift iterations in designs, resulting in reduced costs, streamlined logistics, and mitigated expenses linked to conventional manufacturing methods. Additionally, Vestas incorporated smart fixtures, integrating sensors and circuits into their 3D-printed tools to enhance functionality and accuracy. 

Given the extensive global reach of Vestas' operations across continents, the challenges associated with lead times for spare parts and expedited costs further underscored the compelling nature of AM solutions. Aligned with Vestas' IoT strategy and Industry 4.0 initiatives, 3D printing bolstered supply chain agility—an essential factor, especially when relying on suppliers in distant countries.

This shift towards digital inventory not only eliminated tax burdens but also significantly enhanced the value of the manufacturing process. The reduced mean time to repair (MTTR) metric served as a marker for increased efficiency and reduced downtime in both manufacturing and field service operations. 

3D Printing in Response to COVID 

3d-printed-covid-door-claw-vestas
vestas doorclaw vestas

During the COVID-19 pandemic, Vestas produced over 5,000 personal protective devices with their BigRep STUDIO for frontline workers in healthcare facilities. They designed and produced AM face shields and door claws to help reduce the spread of infection and create safe, hygienic working conditions. The design was made open source which resulted in more than 1000 downloads.

Circularity and Sustainability

Vestas turns their scrap carbon fiber from the manufacturing process into additive manufacturing feedstock. With BigRep's open environment ecosystem, they can upcycle waste into 3D-printed parts and prolong the life of what would otherwise go to waste. The process repurposes and transforms carbon fiber into 3D printing material by grinding, compounding, and filament extrusion:

  1. Grinding: The waste carbon fiber undergoes a grinding process to break it down into smaller particles. This grinding process reduces the carbon fiber scraps into finer granules, creating a more manageable form for further processing. 
  2. Compounding: The ground carbon fiber particles are then combined with a suitable thermoplastic matrix material. This compounding step involves mixing the carbon fiber granules with the thermoplastic polymer, often through methods like extrusion or compounding machines. This mixture forms a composite material, combining the properties of both the carbon fiber and the thermoplastic. 
  3. Extrusion: The compounded material is then heated and melted before pushing it through a nozzle to create a continuous filament of uniform diameter. This filament, now containing recycled carbon fiber, can be used as feedstock for 3D printing. 

Apart from recycling its waste carbon fiber, Vestas also substantially minimized its carbon footprint by maintaining a digital inventory of components and printing them on demand with the BigRep STUDIO. Maintaining physical inventories of components and the logistical burden associated with transporting them across continents are no longer an issue as they are printed at the location required.  

Reshaping Wind Energy

Reshaping wind energy for Vestas

By replacing traditional steel tooling with resilient plastic counterparts crafted through additive manufacturing, Vestas advanced its manufacturing capabilities in wind turbine construction. What started as a project to create tools for blade assembly and QA, then extended to the production of spare parts, streamlined supply chains, and later supported COVID initiatives. 

With 3D printing, Vestas aligned their production process with their vision: sustainable energy solutions powered by sustainable manufacturing practices.

Want to learn more about how Vestas leverages 3D printing for tooling?

Register to watch the on-demand webinar, Vestas - Windmills With 3D Printed Jigs and Fixtures.

Join Vestas’ Principal Engineer, Jeremy Haight, as he discusses the resounding success of implementing 3D printed tooling and moulds in the manufacturing of their renewable energy systems.

Sign up now to learn … 

  • Why 3D printed plastic tooling improved Vestas’ production quality
  • How in-house production helps to improve factory equipment on demand
  • Why manufacturing equipment is the “sweet spot” for 3D printed low-volume mass production
  • How hybrid 3D printing can bridge the gap for ultra-high-strength applications
  • The health and safety benefits of lightweight 3D printed parts

 Don't miss out, register for the webinar:

HOW VESTAS MANUFACTURES WINDMILLS WITH 3D PRINTED JIGS AND FIXTURES

About the author:

Natasha Mathew <a style="color: #0077b5" href="https://www.linkedin.com/in/natasha-mathew/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Natasha Mathew

Copywriter

Natasha Mathew enjoys trying new things and one of them she’s currently obsessed with is 3D printing. Her passion for explaining complex concepts in simple terms and her knack for storytelling led her to be a writer. In her 7 years of experience, she has covered just about any topic under the sun. When she’s not carefully weighing her words, she’s reading, crafting, spinning, and adventuring. And when asked about herself, she writes in the third person.

3D Printing Reinvents the Bass Drum Without Missing a Beat

BigRep 3D printed drum cover image

What possesses someone to reinvent a musical instrument that’s been around for thousands of years?  

Oliver Deeg, a product engineer, and musician will tell you: boredom, curiosity, and a firmly rooted knowledge of additive technology. His dream? To create drums that aren't confined by traditional manufacturing limitations. His tool of choice? Large-format 3D printing.

https://www.youtube.com/watch?v=XWWZEfa-Y00

Defying Conventional Constraints

Oliver Deeg is a man of talents and passions; CAD design, additive 3D printing technology, and e-commerce being the mainstays. His vision is to push the boundaries of design and music through Additive Manufacturing. 

Like most drummers, customizing and building his own drum kit has always been his dream. His journey began alongside a friend crafting drum sets in wood, but the constraints of traditional methods held him back from making the design truly his own. 

BigRep 3D printed drum Oliver Deeg

Meticulous woodworking is the time-tested way of crafting a bass drum. It begins with selecting quality wood like maple or birch, dried to prevent warping. Wooden staves are shaped and glued together to form a cylinder, creating the drum's shell. Precise bearing edges are then cut to optimize contact between the drumhead and shell, crucial for tone. The holes are then drilled for hardware, and the shell undergoes thorough sanding and finishing. Drumheads, made of synthetic or animal skin, are attached using tension rods. Finally, the hardware is assembled, and fine-tuning adjusts the drum's tension rods for the desired pitch and resonance. This intricate process demands skilled craftsmanship and attention to detail to create a bass drum. 

This process has been stagnant and leaves little room for experimenting with sound and design. Oliver saw the potential to produce drums that would be free of these limitations. He turned to 3D printing and his expertise in Additive Manufacturing proved advantageous, with which he began producing small drums. From small prototypes, his ideas snowballed into more ambitious projects. True to the heart of a musician and the mind of an engineer, he couldn’t help thinking BIGger.

BigRep 3D printed drum

"With 3D printing, it was the first time that I felt there are no real borders. You conceptualize an idea, and within hours, you hold a tangible prototype. It's such a dream come true”

Dreaming BIG

The turning point came when Oliver crossed paths with BigRep at Formnext 2022 which led to a collaboration that propelled his vision forward. BigRep's range of materials and large-format 3D printers were instrumental in materializing his vision - A 24 Inch Base Drum with 6 USPs: 

  1. Cone-shaped inner shell to explore new unique sounds. 
  2. Relief shell design for stability and an aesthetic finish. 
  3. Sound + cable hole to release air pressure and also double up as a means to insert microphones into the drum. 
  4. Hollow-shaped fill hole to hold granulates such as sand or can also contain water. When empty, it produces more of a violin-like sound, and when filled, results in lower frequencies. 
  5. Customized hoops to hold the drumhead. 
  6. Experimentation with a range of materials to find the best sound, fit, and finish.
BigRep 3D printed drum with lugs

He adds,

"The collaboration with BigRep was a game-changer. Their advanced printing capabilities enabled the creation of drums with exceptional quality."

Anatomy of the 3D Printed 24-inch Bass Drum

3d printed bass drum

  1. Relief Shell Design For stability and an aesthetic finish. 
  2. Holes for lugs Space for metal lugs to hold the tuning screws. 
  3. Cone Shaped Inner Shell Crafted like a megaphone, it is instrumental in creating new sounds. 
  4. The Drum Shell Main body of the drum. 
  5. Screw Holes To secure lugs from the inside. 
  6. Sound and Cable Hole Releases air pressure and doubles as a space to insert microphones inside the drum. 
  7. Hollow Shell with Fill-Hole for granulates such as sand or can also hold water.  
  8. Hoops to hold the drumhead crafted for the 3D-printed shell. Produced twice.  

Oliver's drum set is an embodiment of unconventional acoustic principles. Inspired by how sound amplifies in conical shapes, his design incorporates two shells with an acoustic space between them—a feat unattainable through conventional methods. 

He elaborates,

"Finding the right material and producing a large-scale print of this size was the biggest challenge. The drum took a few days to print. The surface, straight from the printer, was immaculate, there was no need for post-processing."

BigRep 3D printed drum close-up

3D Printing Hits the Right Note 

Plastic drums are nothing new, they’ve been around for a while. But they all have a distinct sound and feel that doesn’t stand out the way that the 3D-printed bass drum does. The very first impression of the drum for Oliver was that it sounded incredible. Not only did the sound and design deliver, but also the material and construction of the drum held its ground. When he put it under the microphone in the studio, the real difference showed up. It did not just compete with a regular drum but also sounded distinct because of its USP – The Conical Inner Shell. 

BigRep 3D printed drum Oliver Deeg in a recording studio

Starting out, Oliver knew designing the 3D file, pushing print, and producing the drum parts wasn’t going to be a simple ride. What is usually perceived as easy geometry is not, and the drum required expertise and accuracy that, along with BigRep, he was able to achieve making him a firm believer that the next wave of drum customization belongs to Additive Manufacturing.  

Given his fascination with 3D printing technology, it’s no surprise that he sees it as not just being a catalyst for a new era in creating musical instruments but also integrating into our everyday lives. For him, the future holds a fascinating prospect—a world where every household could house a 3D printer, becoming an answer for personalized on-demand production. 

“I envision a day when a 3D printer sits in every home, where ordering something means it materializes straight out of your own printer,"

Oliver concludes.

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

About the author:

Natasha Mathew <a style="color: #0077b5" href="https://www.linkedin.com/in/natasha-mathew/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Natasha Mathew

Copywriter

Natasha Mathew enjoys trying new things and one of them she’s currently obsessed with is 3D printing. Her passion for explaining complex concepts in simple terms and her knack for storytelling led her to be a writer. In her 7 years of experience, she has covered just about any topic under the sun. When she’s not carefully weighing her words, she’s reading, crafting, spinning, and adventuring. And when asked about herself, she writes in the third person.

Leveraging 3D Printing for Automotive Customization at AVI Boston

AVI Boston turns to 3D printing for automotive customization, cutting costs and saving time.

AVI Boston seamlessly weaves technology into crafting personalized and bespoke automotive parts like dashboards, radar installations, door panels, and beyond.

What puts them ahead of the curve is their expertise in integrating cutting-edge audio and visual systems, elevating both the car’s aesthetics and functionality. Their innovative approach is amplified by their use of 3D printing to manufacture end-use parts with BigRep’s STUDIO 3D printer to bring their concepts to life.

Having been in the automotive customization game for over seventeen years, AVI recently approached BigRep to purchase the STUDIO – a large-format 3D printer.

"Finding skilled fabricators and installers is a challenge, but with our STUDIO, it's like having a full-time employee building parts. We design, press print, go away for the weekend and all the parts are ready by Monday morning."

“A big issue we were facing was that we didn’t have enough hands onboard. Finding good fabricator installers is really difficult and now we have a 3D printing machine that does that for us, it's almost like having a full-time employee building a part," said Safi Barqawi, the owner of AVI Boston.

What the STUDIO 3D Printer Brought to the Table

“We can design everything specifically, just press print and we have the entire file on our computer. The cool thing is we have a scan of the door, the dashboard, the center console, design and build it even if the car is not here.” added Safi.

STUDIO G2 features that MOVED the

needle for  AVI BOSTON 

Large Build Volume

The STUDIO G2 boasts of a generous build volume of 1000 x 500 x 500 mm, 10 times that of standard desktop 3D printers. This enables AVI to create sizable quality end-use parts in a single print job, expanding the possibilities for customization.

BigRep STUDIO - Large build volume
BigRep STUDIO Dual Extruder

Dual Extrusion

The ability to print structures with two different materials without having to swap out filaments. The STUDIO G2 eliminates the need for filament changes and opens up possibilities for an uninterrupted seamless print without changing hands.

Reduced Post Processing

Compatible with the STUDIO G2’s dual extrusion system, water-soluble support material BVOH is a revolutionary filament in post-processing. This ecologically friendly advanced material delivers support during print and massively reduces post-processing.

BigRep BVOH Water-Soluble Support Filament
Blade

Digital Inventory

Produce on demand without added costs and uncertainty of keeping stock parts. Instead of stocking up on parts and running the risk of them going to waste, AVI could hit print as needed and create intricate, functional structures like dashboards, doors, center consoles, and cup holders.

Automotive Customization with 3D Printing
Complete auto interiors 3D printed, including panels, doors, cup holders, and more.

How AVI Benefited From BigRep’s STUDIO G2

Works Around The Clock

Having the STUDIO G2 is like having an extra pair of hands in the garage that works without a pause, occasionally needing a bit of grease. “We get five orders, we just press print five times, go away for the weekend, and come back all five prints are ready for us Monday morning” says Safi. “We do a lot of magnetic kits for a specific vehicle and once we design it, we can print it as many times as we'd like without having to recreate the product itself.”

Complex Geometries And Fine Details Come Through

Car parts like custom interior panels and speaker covers need intricate designs that are time-consuming and particularly hard to achieve with traditional machining methods. “With the STUDIO G2, we’ve been designing these parts in-house and building clean structures for such intricate pieces. We would never be able to do that by hand. Getting down to that small of a detail is really hard. What would take days or weeks to get manufactured outside is done in a fraction of the time with the STUDIO.”

Automotive Customization with 3D Printed Car Parts
AVI Boston 3D prints custom car parts with the BigRep STUDIO G2.

Cost Effective Solution

One of the perks of 3D printing in automotive customization is its ability to reduce production costs. With traditional manufacturing processes, tooling and molds are often used resulting in high costs. In comparison, when AVI switched to the STUDIO, it eliminated the need for expensive tooling resulting in reduced production costs, especially when it came to low-volume production and customization.

Intuitive User Interface

“The STUDIO G2 has been nothing but positive all the way around. The machine is extremely easy to use, it's very intuitive, if you want something, you just press print as many times as you want, and it’ll just keep printing it.” The STUDIO is equipped with an intuitive user interface that enables AVI to remotely load gcodes onto the system. The other functions supported by the machine are calibration of the print bed, stop and start operations, and monitoring systems in conjunction with BigRep’s CONNECT. “So, if there are three things that we do all the time, we have three presets on there and you just press print when you are ready for it. It's a very well thought out product backed up by a very good service team.” Safi elaborated.

Assembly of 3D Printed Car Parts
AVI Boston employee examines a newly installed 3D printed door panel.

The BIG Advantage

The conventional way to produce car parts has been highly manual. With the STUDIO, AVI could directly 3D print end-use parts that cost way less and fit perfectly the first time which also helps them stay on top of project timelines. The compact design of the 3D printer was the icing on the cake that enabled AVI to host it right in their workshop. “One of the coolest things about the STUDIO G2 is that it’s sleek and allows us to be super-efficient with the space we have. This gave us the ability to design and print parts with a 3D printer in-house” concludes Safi.

Want to learn more about car customization empowered by additive manufacturing?

Register to watch the on-demand webinar, Digitizing Production of Custom Large-Format Automotive Parts.

Learn how digitizing this process drastically reduces production time and number of stages while saving money and material costs. Also hear from Jeremy Katz, owner of JK Automotive Designs, and see first hand how Katz embraced different technologies, allowing his team to offer more to their clients and continue exceeding expectations. Don't miss out, register for the webinar:

DIGITIZING PRODUCTION OF CUSTOM LARGE-FORMAT AUTOMOTIVE PARTS

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

About the author:

Natasha Mathew <a style="color: #0077b5" href="https://www.linkedin.com/in/natasha-mathew/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Natasha Mathew

Copywriter

Natasha Mathew enjoys trying new things and one of them she’s currently obsessed with is 3D printing. Her passion for explaining complex concepts in simple terms and her knack for storytelling led her to be a writer. In her 7 years of experience, she has covered just about any topic under the sun. When she’s not carefully weighing her words, she’s reading, crafting, spinning, and adventuring. And when asked about herself, she writes in the third person.

Students Bring “Breathing” Audi Car Seat to Life with 3D Printing

Audi Car Seat by Braunschweig students "Concept Breathe"

Responsive car seat enabled by large-format 3D printing showcases innovation potential for additive manufacturing in the automotive space.

While the focus is often on engine power and exterior design when talking about cars, there is another automotive feature ripe for innovation. The car seat, which functions as the interface between driver and vehicle, is one of the most important elements of a car and must offer ergonomic support, safety features, and comfort.

In recent years, there has been a growing focus on how to reinvent and improve automotive seating using new design concepts and advanced manufacturing, such as 3D printing. One such project, entitled “Concept Breathe”, was the result of a collaboration between students at the Braunschweig University of Art, German automotive manufacturer Audi, and large-format 3D printing specialist BigRep.

A Multi-Partner Effort

Concept Breathe, which culminated in the creation of a full-sized “breathable” car seat, was born out of an exploration into the car of the future. The Braunschweig design students, under the supervision of Dr. Manuel Kretzer, a professor of Material and Technology, and Audi’s development/innovation unit led by Mike Herbig, were inspired by the idea that the car of the future could have a greater connection to the driver. As they say: “What if it were to become a partner that reacts and responds to our actions, an organism, a friend, that lives and breathes?”

Interestingly, Audi had already started pursuing this idea with the development of Klara, a “sensitive Audi A1” in 2017. This concept study aimed to foster greater empathy between automobile and driver by creating a sensitive car that appears to breathe. The breathing effect was the result of 39 electric motors installed under the car’s metalwork and several sensors that would enable Klara to take breaths and react to its surroundings.

The Concept Breathe car seat project, undertaken in the spring of 2017, was an extension of the experimental Klara initiative that sought to combine different technologies and design principles to create a more human car seat that could dynamically move along with the driver.

“What if the seat were to become a partner that reacts and responds to our actions, an organism, a friend, that lives and breathes?”

Braunschweig student designs for Audi seat "Concept Breathe"
Design and Form studies in side view by Maximilian Dauscha

Conceiving of ‘Concept Breathe’

The seating project was spearheaded by a group of 10 bachelor students at the Braunschweig University of Art as part of their Digital Crafting module. The courses in this module are specifically aimed at developing “an experimental understanding of emerging design opportunities” by leveraging innovative algorithmic and parametric design principles, as well as digital manufacturing technologies, such as 3D printing, which bring design concepts to life.

Ultimately, the car seat’s design was inspired by organic shapes and systems and consisted of several active components integrated into a lightweight frame. Due to the final design’s complex geometry—which was the result of several parametrically designed iterations—the student team and their partners decided to 3D print the 1:1 seat prototype. BigRep, known for its large-scale 3D printers, was more than up to the task.

The seat structure was 3D printed using the BigRep ONE machine, which has a large build volume of up to one cubic meter, and BigRep’s PRO HT filament, an easy-to-print biopolymer with enhanced temperature resistance compared to traditional PLA. The printing process took nearly 10 days to complete, which at the time marked BigRep’s longest print.

Onto the 3D printed frame were attached 38 customized active components, which created a haptic and visual breathing effect, along with a range of specially designed cushions made from a high-performance textile for optimized comfort and support. As the design team put it: the active components (seen in red) “are designed to increase the seat's ability to respond to changing driving conditions but especially to enhance the user's identification with the animate object through motions of breathing.”

Audi Breathe Chair 3D print on BigRep ONE

Paving the Way for Innovation

BigRep’s 3D printing technology was vital to the realization of the project. Not only was the company’s large-format 3D printer equipped to handle the scale of the full-sized car seat structure (reducing the need for post-printing assembly), it was also able to reproduce the product’s complex organic shape. Moreover, 3D printing offered the project partners a cost-accessible way to directly create a large prototype without having to invest in tooling or turn to complex supply chains.

In the same way that large-format 3D printing was critical to bringing this concept design to life, the technology is now being used across the automotive industry to explore new design ideas and bring new innovative solutions to market, from rapid prototypes to end-use parts. In automotive seating applications in particular, there have been a number of projects that leverage the technology’s ability to create complex designs optimized for performance and comfort, as well as customized products at scale.

Similarly, German automaker Porsche recently launched a 3D printed bodyform full-bucket seat that integrates customizable 3D printed lattices for superior support and breathability. Much like Concept Breathe, the 3D printed seat emphasizes the human and technology connection to generate an enhanced driving experience, particularly for high-performance vehicles.

3D Printed Audi Car Seat by Braunschweig Students

3D Printing is the Future of Automotive

Ultimately, the Concept Breathe project would not have been possible without additive manufacturing, particularly BigRep’s large-format 3D printing. The technology proved to be essential for rapidly and cost-effectively bringing an innovative idea to life.

For the broader automotive industry, the ability to 3D print large structures and products in a single piece has huge benefits. For one, it allows for design consolidation, allowing for large structures to be printed in one go, minimizing assembly and post-processing times. This has significant time and cost impacts whether users are printing a design concept, a functional prototype, or an end-use part.

The technology also enables product designers to create previously impossible designs, opening up limitless opportunities for innovation. With it, forward-thinking individuals and teams (such as the Braunschweig design students and their partners at Audi and BigRep) can really dive into new ideas and transform them into something real, something that can shape the future.

To learn more about how 3D printing helped bring the Concept Breathe article to life, check out the following video and the original coverage of the project.

Interested in how the BigRep ONE can unlock your innovation? Learn more about large-scale printing here.

SFM Technology Create the First Helicopter Blade Restraint Cradle With 3D Printing Technology

When tasked with creating restraint cradles that allow helicopters to load safely, SFM Technology turned directly to the BigRep PRO.

Rough seas not only make smooth sailors, they also make smooth engineers who can find innovative solutions to choppy conditions. This is especially true when it comes to aviation, as helicopters are frequently tasked with embarking onto ships during all different types of weather conditions.

Once helicopter flying operations have ceased, they will either stay on the flight deck or be stowed in the ship’s hanger. They use an automatic folding system, folding in their blades like a bumblebee. The issue of stabilization remains a key priority when it comes to the smoothest embarkation possible. This is achieved by using a main rotor blade restraint cradle.

As Gary Wilson, head of Technical Sales at SFM's AeroAdditive division tells us: "When a helicopter is on board a ship, it can fold its helicopter blades back. But at sea it's still windy, and the blades can flap. These blades must be restrained so flapping doesn't occur."

Aerospace and defense giant Leonardo - tasked by the Ministry of Defence to provide AgustaWestland AW101s for the Royal Navy - found that their pre-existing main rotor blade restraint cradles were not living up to their standard. They turned to SFM Technology's AeroAdditive department for the solution, resulting in the first 3D-printed main rotor blade restraint cradle, measuring 900 x 230 x 160mm. Gary Wilson explains how they created the cradle and why he believes this is just the start for additive manufacturing within the aerospace industry.

SFM Technology
The Blade Restraint Cradle, Printed on a BigRep PRO

3D PRINTING PROVIDES THE SOLUTION

As a solution had to be found very quickly, SFM relied on the speed of innovation possible with additive manufacturing.

"We had to look at many aspects of 3D printing, including cost, efficiency, and of course, size. Eventually, we looked at the BigRep PRO as we had to look at a production 3D printer. The machine is used as a production machine, so every rotor blade restraint cradle goes to the end customer."

3D PRINTING MORE VERSATILE THAN TRADITIONAL METHODS

In the aerospace industry, lightweight yet strong parts are essential. After stress-testing their 3D printed parts, SFM Technology found that they performed better than original, non-printed parts. By using Hi-Temp CF – a carbon fiber reinforced material with versatile, high-strength properties – the blades are extremely durable and weather resistant.

The benefits have been manifold.

“To date, we have printed 30 cradles, consisting of 60 halves, since January. If we were to do that in a traditional way, we would have done about a quarter of that. So, you can see that 3D printing is far quicker, as we don’t have any adjustments to make, or if we do, they’re very minor and can be quickly overcome. And the material is just as strong.”

sfm_technology_04

THE ADVANTAGES OF HI-TEMP CF

Choosing the right material was crucial in SFM’s choice.

“We carried out many tests to establish which was the most suitable material within the budget given. Having looked at the data sheets, we felt that BigRep's HI-TEMP had a slight advantage over the other BigRep materials.”

Once they remove the support material, sandpaper is used to smooth the surface. Bushes - a type of fixed or removable cylindrical tube - are inserted in the hinges, before using threaded helicoil inserts for fastening when required. After the cradle is painted to the customer's specification, the remaining hardware is embedded along with a protective foam on the inside of the cradle, preventing it from scratching the blade surface.

The Blade Restraint Cradles in Action
The Blade Restraint Cradles in Action

THE START OF 3D PRINTING IN THE AEROSPACE INDUSTRY

With the main rotor blade restraint cradles already in use, Mr. Wilson attests that this experience shows what 3D printing can achieve in the aerospace industry and that it's only a matter of time before additive manufacturing becomes the norm.

"In the aerospace industry, there are many designers nervous about 3D printing. We've demonstrated that 3D printing can be used in the aerospace industry quite comfortably from a strength, repeatability, and quality side. I know for a fact that as the industry moves forward on 3D printing, there will be more and more accessible paths to use."

SFM Technology are using the BigRep PRO as a batch 3D printer, sequencing production and creating improved results across the board. This follows more aerospace designers discovering the benefits of 3D printing and adopting it in due course. 

Want to learn more about 3D printing and aerospace. Learn about how 3D printing saved Airbus time and money!

INDUSTRIAL QUALITY MEETS COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

INDUSTRIAL QUALITY MEETS  COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

3D Printing Saves Time and Money as Airbus Innovates R&D Processes

Airbus

Even though airplanes are flying machines packed with technology, passengers typically perceive them as cramped yet passably comfortable traveling environments. Covers and panels hide all the actuators, cables, and electrical and mechanical devices in the plane walls. They also safely shield functional components from passengers while also contributing to the look and feel of the interior cabin space. These panels are commonly made from fiberglass composite materials due to the combination of low weights with high stiffness and load-bearing capabilities.

Large Parts Traditionally Require Expensive Manufacturing Techniques

Each version of a cover or panel commonly requires mold manufacturing. Glass fiber mats soaked with resin are placed, thus shaping the final panel after curing the resin. This process is time-consuming. It easily takes six to eight weeks to make one larger panel. Additionally, the high amount of manual labor involved causes substantial costs.

Engineers quickly realized that the BigRep ONE could be used in many other areas of research and development.

Product development requires evaluating and improving each design iteration until the best solution is reached. In some cases, designs can be checked through software evaluation. However, many situations require the creation of a physical prototype to properly evaluate its scale, fit, performance, aesthetics, and more. Having a physical object available also facilitates testing of mounting and assembly procedures.

Traditionally, aircraft interior panel prototypes would require CNC machining a mold before hand-laying the fiberglass and finishing the surface. Airbus would typically outsource the CNC machining, which meant they would wait weeks before starting the fiberglass process. Since each new iteration requires a new mold, the process is highly time-consuming and expensive. In many cases, prototypes would not be produced, denying the engineers the chance to improve designs before the final product was produced.

Airbus 3D Printing Airplane Cabin Panels

3D Printing Saves Time and Money During the Development Phases

Highly functional parts like aircraft doors require sophisticated panels, combining technical capabilities with an aesthetic appearance. The hinges, for example, need covers that match the cabin's interior design while also meeting performance and safety benchmarks. Since traditional fiberglass construction for airplane interiors is slow and costly, this restricts the manufacturer's ability to iterate and improve their designs.

Airbus would typically outsource the CNC machining, which meant they would wait weeks before starting the fiberglass process.

Airbus found a solution to this problem in the BigRep ONE 3D printer, which they had originally purchased to support helicopter development. Engineers quickly realized that the BigRep ONE could be used in many other areas of research and development. They began to print prototypes for aircraft interior components. While the Airbus engineers had experience with additive manufacturing on a smaller scale with desktop printers, they realized the enormous advantages of the BigRep ONE's one cubic meter build volume, which allowed them to 3D print prototypes of panels, linings, and covers in full scale, true to size.

Airbus

How Does Airbus Benefit From BigRep Large Format 3D Printing?

With their BigRep ONE, Airbus engineers can 3D print the part, evaluate it, redesign it, and repeat it as needed until the design is finalized. An added advantage of their in-house BigRep 3D printer is eliminating the long lead times and additional logistics for outsourcing mold production. Relying on full-scale 3D prints for the cycles of design iteration makes this process much more straightforward while saving time and money.

For large parts accurate enough for implementation into aircraft interiors, Airbus engineers relied on BASF's Ultrafuse PRO1 filament to 3D print their prototypes. PRO1 is easy to print and results in a beautiful surface finish without any warping. Airbus engineers noted that the precision of 3D printed prototypes are sufficient for their defined tolerances - particularly for large parts - so they can reliably create and test designs that are very close to the finished product.

While Airbus is constantly 3D printing prototypes with their BigRep ONE, they expect to use it in other areas. Having already learned that they can save a lot of money with 3D printed solutions, the Airbus engineers currently use desktop 3D printers to create some tooling. Their future plans will make use of the one cubic meter build volume of their BigRep 3D printer to produce large scale factory tooling. Learn more about the BigRep ONE here.

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

About the author:

Michael Eggerdinger <a style="color: #0077b5" href="https://www.linkedin.com/in/michael-eggerdinger-a45b9814" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Michael Eggerdinger

Business Manager Materials

Michael is a toolmaker, a mechanical engineer, and a patent engineer. His years of working in manufacturing and as a project manager in various industries provide him with a profound knowledge of the main challenges in modern production processes. In 2017, he bought his first 3D printer to be used at home, and he has been hooked ever since!

How CNC Machining and 3D Printing Can Work Together in your Shop

Do you ask yourself if CNC machining or 3D printing is the better manufacturing process? The answer is simple: “It depends!”

Many workshops rely on CNC machining as the backbone of their production processes. However, with the rise of additive manufacturing, more and more companies think about including 3D printing into the workflow or even replacing their CNC machines. Let us give you an overview of what 3D printing can do for you, and how you can best combine both processes.

Overview of CNC machining or Subtractive Manufacturing

CNC3DP_CNCManu

CNC machining uses a computerized tool machine to produce the desired object by removing the surplus material from a blank. It is still the most cost-effective process for manufacturing parts in medium to large numbers. As a tried and tested method, CNC machines are available in workshops all over the world, and extensive knowledge exists about the whole process chain. It is very versatile in terms of materials that can be machined, geometries that can be produced, and achievable surface qualities and tolerances. Therefore, in many cases, CNC machining is still the method of choice.

CNC3DP_Subtractive_cropped

However, CNC machining is still a highly specialized process, especially if geometries are of higher complexity or challenging materials are involved. CNC machining also requires highly skilled designers and programmers, leading to high personnel costs. Often special clamping tools are required, which must be designed and manufactured as well. This increases part costs, even more so, if the parts are in small numbers. Also, since you are starting with a block of material when CNCing a part, material cost will always be higher, and the amount of waste will also be more.

Overview of 3D Printing or Additive Manufacturing

CNC3DP_3DPrinting

Although various methods of 3D printing have proven to be a viable manufacturing process, it still is not as common as conventional machining. But FFF (Fused Filament Fabrication) is becoming more and more popular in various industrial branches to produce small to medium batches of end-use parts or prototypes. Plastic is melted, then extruded through a nozzle, and the part is built up layer by layer. Apart from support structures, only the amount of material making up the final part is used, so almost no waste is produced. The object is printed directly on the flat surface of the print bed, so no clamping tools are required.  Only a little specific knowledge is required to set up a BigRep printer and start a print. The printing process itself does not limit the part design in any way; almost any geometry can be printed.  This helps in overcoming established ways of thinking in design and development. Riley Gillman, Technical Operations Manager at Nikola Motor Company said, "You can really challenge the engineering process and the manufacturing process!”

CNC3DP_Additive_cropped

Due to the layer-based process, the surface quality is not comparable to milled parts and can require post-processing to a certain extent. And although more and more parts with very narrow tolerances can be printed, values as they are common for milled parts often cannot be matched.  The choice of material is also limited; FFF only allows plastics to be used that can be melted.

How to Use Your Big 3D Printer Best?

Hand Jigs and Production Tools

CNC3DP_handheldtool

This handheld tool that is used during the assembly of cars shows one typical application. The over 120 cm long part was initially planned to be milled out of a block of aluminum. However, overall costs, including machine, personnel, and material costs would have been around 10.000 € with an estimated time to completion of about two weeks. A Chinese manufacturer quoted 5.800 USD with a similar delivery time. Finally, it was decided to print the part in BigRep HI-TEMP CF on a BigRep PRO, which took 32 hours. The costs were about 790 USD, resulting in savings of 86%! A welcome side effect for the users handling the part was a reduction in weight of about 50%, compared to the aluminum version.  All things considered, a very successful use case.

3D Printed End-Use Parts

CNC3DP_serialparts

Boyce Technologies uses 3D printing to produce end-use parts in their 5G kiosks that they make for Verizon. Due to the special shape of these air ducts, milling would have taken a long time and required extensive preparation time and post-processing. By 3D printing the parts instead, huge costs were saved in not only time and material costs, but also with the number of employees required to support preparation and post-processing. With large-format additive manufacturing, another benefit is that many parts can be printed at the same time, allowing for optimal use of the printer’s build volume.

How to Combine 3D Printing and CNC Machining?

The advantages additive manufacturing offers can be increased even more by combining it with other manufacturing processes.  3D printed objects can be reinforced by metal parts in places where higher loads occur; insert nuts made of brass can be inserted in plastic parts. Printed parts can also be machined in order to achieve dimensions with critical tolerances or required surface qualities, or even to mill threads. Jigs and fixtures as well as clamping and positioning tools made by 3D printing facilitate working with CNC machines. By intelligently combining 3D printing and CNC machining, users can benefit from the advantages of both processes.

A perfect example of how the 3D printer is also helpful when designing and manufacturing simple jigs, like positioning or assembly tools, as shown below. In this application, Gillman at Nikola was tasked to find a way to securely hold an aluminum part in place for CMM inspection. The aluminum part itself could not have been produced by 3D printing due to very specific geometrical requirements, so it had to be milled on a CNC machine. But making the fixture from aluminum would have required open space on a CNC machine and a lot of raw material. So, Gillman decided to produce it using his BigRep PRO. From idea to part, it only took a few hours, at material costs of under 20 USD!

CNC3DP_fixture

In the last few years, Nikola Motor Company has experienced an increased shortage of materials as an ever-decreasing availability of external suppliers. Here a 3D printer offers flexibility and independence.

Riley Gillman summarizes the reasons for using his 3D printer: “Very often, we produce large parts with very challenging time limits. The geometry of the parts plays a large role; some of the parts are simply too complex to manufacture them using conventional methods. And sometimes we simply don’t have the budget to use any other process than 3D printing!”

How Can You Profit from Additive Manufacturing?

3D printing is most commonly used when large parts are required on short notice or when multiple iterations of a single part are needed. 3D printing enables you to make changes to 3D models quickly and easily, and then manufacture them in-house, massively reducing lead times. Functional prototypes are available much faster and you have a better idea of what the final product will look like.

Is it Beneficial for You to Use 3D Printing?

It is important for companies to understand the costs behind a 3D printer and what the ROI will look like. Here is a simple example: If you are paying about 5.000 USD per part with a 3D printing service and you need 4 similar sized parts per month, you will be spending about 20.000 USD a month!  When you start comparing this to what it costs to purchase a printer, it becomes apparent that buying a printer is a worthwhile investment.

Which Process is Best Suited for You?

After all these considerations, the answer “It depends!” is easier to understand. The first step should always be, deciding which technology is best for your part and its intended use. Both processes have their advantages and their own applications, so 3D printing will not fully replace CNC machining.

And if you aim to combine both processes so that they complement each other, buying a 3D printer will give you many benefits, including:

  • increased flexibility and independence
  • time and costs savings
  • expanded manufacturing portfolio
  • improved internal processes

If this sounds interesting to you, speak to one of our experts! We will show you which one of our 3D printers is best suited for you and your applications. Or send us a CAD file of a sample part, and we will calculate costs and printing time for you.

See How CNC and 3D Printing Work Together at Nikola Motor

Speaker: Riley Gillman

Riley Gillman, Technical Operations Manager at Nikola Motor Corporation, shows:

  • The Advantages and disadvantages of CNC and 3D Printing
  • Integrating 3D printing into your machine shop
  • Selecting the right manufacturing process for part
  • Cost and time savings for real custom examples
  • Understanding ROI

About the author:

Michael Eggerdinger <a style="color: #0077b5" href="https://www.linkedin.com/in/michael-eggerdinger-a45b9814" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Michael Eggerdinger

Business Manager Materials

Michael is a toolmaker, a mechanical engineer, and a patent engineer. His years of working in manufacturing and as a project manager in various industries provide him with a profound knowledge of the main challenges in modern production processes. In 2017, he bought his first 3D printer to be used at home, and he has been hooked ever since!

Local Manufacturing Accelerates with BigRep PRO

The Berkshire Innovation Center (BIC), located in Pittsfield, Massachusetts, is a centralized technology hub that provides academic research and commercial manufacturing services to a vast partner community. Their strategic location in western Massachusetts provides convenient access to companies located in New York, Vermont, Connecticut and New Jersey. Affectionately referred to as the BIC, Berkshire Innovation Center is a world-class R&D facility that offers advanced technologies for local manufacturing. Founded in 2016, the BIC has amassed an eclectic collection of simulation softwares, video production capabilities and additive manufacturing technologies that enable the partner community to reinvent what’s possible for their businesses. In 2020, the BIC welcomed the newest addition to its advanced manufacturing capabilities with the BigRep PRO 3D printer. The high demand for larger parts is what justified the initial printer purpose but the ability to optimize materials and functionality is becoming a significant advantage for local manufacturers.

berkshire-innovation-center-bigrep-pro

“Our region is so commercially diverse. It’s our responsibility to understand what technologies will bring the most value to our partner network,” says Steven Longpre, Operations Manager at BIC. “When we presented the BigRep PRO as a potential new addition, our partners were thrilled with the idea.”

BIC members include industrial manufacturers, medical device developers, agricultural specialists and defense suppliers. Gaining access to the BigRep PRO large build platform (1m3) provides immediate benefits for short run production applications and full-scale prototyping.

Autonomous Underwater Vehicles

Dive Technologies, an American veteran-owned small business that produces autonomous underwater vehicles (AUV) designed to withstand long operations at oceanic depths, constitutes one printing success with BIC.

“Yes, the ability to print large parts was advantageous for this particular project, but having stronger materials and the freedom to design complex structures is what really drove this project forward,” Longpre says. Dive Technologies printed in several materials, eventually settling on ABS plastic due to the strength characteristics that could withstand the underwater environment. Dive Technologies develops AUV’s that serve a variety of functions so building quick prototypes to scale gives them the ability to iterate faster and customize devices that are designed to solve specific problems.

Autonomous Underwater Vehicles - Prototype
Autonomous Underwater Vehicles - Prototype
Commercial AUV, the DIVE-LD, in-water
Commercial AUV, the DIVE-LD, in-water

Agricultural Product Development

One of the major challenges for the Berkshire Innovation Center is to educate the region about the value of advanced manufacturing. Many of the local businesses are familiar with injection molding, CNC machining and other fabrication methods, but are somewhat hesitant to adopt new practices. This is common for any new technology adoption, so BIC addresses this by taking on any project, large or small, with the intention to share the inherent benefits of additive manufacturing. DfAM (design for additive manufacturing) is the practice of designing parts and products that take advantage of AM technology. This includes:

  • Embracing design complexity
  • Lightweighting of parts that retain similar or better strength properties
  • Product simplification, no assembly required

One such example was when the BIC 3D printed a large sled used for agricultural purposes. Typically, this product requires large tooling investments or parts must be welded together for it to function properly. The time it takes to produce this sled with traditional means could be weeks or months. 3D printing on the BigRep PRO took approximately 3.5 days.

agricultural-large-sled-1
agricultural-large-sled-2
agricultural-large-sled-3

Defense Applications 

There are a variety of defense contractors located in the Berkshire region. While the BIC is unable to publicly share details about projects being worked on, there are several applications where members have taken advantage of BigRep PRO's extensive material portfolio in defense manufacturing.

  • Nylon PA 6/66  | This lightweight material from BigRep has excellent strength-to-weight ratios and is ideal for assembly line jigs, fixtures and other production applications.
  • High Temperature Carbon Fiber | High Temp CF has a heat deflection temperature of up to 115C and has increased durability for UV applications, perfect for outdoor product testing or under-the-hood applications.
  • PETG | PETG is one of the most commonly used materials for BigRep. It’s quick to print, reliable and incredibly cost effective making it ideal for low volume production purposes.

“With a more industrial system, we can bridge the gap between software, materials and hardware for true production purposes,” says Longpre. “The BigRep PRO is a robust piece of machinery that is scalable, repeatable and reliable. Something all our partners are interested in.”

Longpre and the BIC team anticipate new opportunities that capitalize on the BigRep PRO’s unique advantages.

Conclusion

The Berkshire Innovation Center is poised to accelerate the innovation and growth of existing companies within their region. Strategically focused on small to medium sized manufacturing companies (SME’s) enables BIC to respond quickly and develop creative solutions with advanced manufacturing. Although the knowledge transfer gap continues to be a challenge for Longpre and his team, they share optimism and excitement about the future. “We don’t want cheap and easy,” says Longpre. “We want the hardest challenges and are prepared to be transparent with our capabilities. Our goal is to improve product performance, test new ideas and find innovative ways to solve problems for our local industrial community.”

The BigRep PRO is one of the premiere advanced manufacturing platforms available at the Berkshire Innovation Center. The BIC is equipped with a variety of 3D printing machines and is capable of tackling any sized project. Longpre and his team consider the BIC to be an industry agnostic facility, so they pride themselves on building a diverse network of partners and collaborators. If you’re interested to learn more about the BIC, we invite you to visit them at https://berkshireinnovationcenter.com/. BIC acquired their BigRep PRO through our partner, Select Additive.

INDUSTRIAL QUALITY MEETS  COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

INDUSTRIAL QUALITY MEETS COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

Cookie Consent with Real Cookie Banner