How CNC Machining and 3D Printing Can Work Together in your Shop

Do you ask yourself if CNC machining or 3D printing is the better manufacturing process? The answer is simple: “It depends!”

Many workshops rely on CNC machining as the backbone of their production processes. However, with the rise of additive manufacturing, more and more companies think about including 3D printing into the workflow or even replacing their CNC machines. Let us give you an overview of what 3D printing can do for you, and how you can best combine both processes.

Overview of CNC machining or Subtractive Manufacturing

CNC3DP_CNCManu

CNC machining uses a computerized tool machine to produce the desired object by removing the surplus material from a blank. It is still the most cost-effective process for manufacturing parts in medium to large numbers. As a tried and tested method, CNC machines are available in workshops all over the world, and extensive knowledge exists about the whole process chain. It is very versatile in terms of materials that can be machined, geometries that can be produced, and achievable surface qualities and tolerances. Therefore, in many cases, CNC machining is still the method of choice.

CNC3DP_Subtractive_cropped

However, CNC machining is still a highly specialized process, especially if geometries are of higher complexity or challenging materials are involved. CNC machining also requires highly skilled designers and programmers, leading to high personnel costs. Often special clamping tools are required, which must be designed and manufactured as well. This increases part costs, even more so, if the parts are in small numbers. Also, since you are starting with a block of material when CNCing a part, material cost will always be higher, and the amount of waste will also be more.

Overview of 3D Printing or Additive Manufacturing

CNC3DP_3DPrinting

Although various methods of 3D printing have proven to be a viable manufacturing process, it still is not as common as conventional machining. But FFF (Fused Filament Fabrication) is becoming more and more popular in various industrial branches to produce small to medium batches of end-use parts or prototypes. Plastic is melted, then extruded through a nozzle, and the part is built up layer by layer. Apart from support structures, only the amount of material making up the final part is used, so almost no waste is produced. The object is printed directly on the flat surface of the print bed, so no clamping tools are required.  Only a little specific knowledge is required to set up a BigRep printer and start a print. The printing process itself does not limit the part design in any way; almost any geometry can be printed.  This helps in overcoming established ways of thinking in design and development. Riley Gillman, Technical Operations Manager at Nikola Motor Company said, "You can really challenge the engineering process and the manufacturing process!”

CNC3DP_Additive_cropped

Due to the layer-based process, the surface quality is not comparable to milled parts and can require post-processing to a certain extent. And although more and more parts with very narrow tolerances can be printed, values as they are common for milled parts often cannot be matched.  The choice of material is also limited; FFF only allows plastics to be used that can be melted.

How to Use Your Big 3D Printer Best?

Hand Jigs and Production Tools

CNC3DP_handheldtool

This handheld tool that is used during the assembly of cars shows one typical application. The over 120 cm long part was initially planned to be milled out of a block of aluminum. However, overall costs, including machine, personnel, and material costs would have been around 10.000 € with an estimated time to completion of about two weeks. A Chinese manufacturer quoted 5.800 USD with a similar delivery time. Finally, it was decided to print the part in BigRep HI-TEMP CF on a BigRep PRO, which took 32 hours. The costs were about 790 USD, resulting in savings of 86%! A welcome side effect for the users handling the part was a reduction in weight of about 50%, compared to the aluminum version.  All things considered, a very successful use case.

3D Printed End-Use Parts

CNC3DP_serialparts

Boyce Technologies uses 3D printing to produce end-use parts in their 5G kiosks that they make for Verizon. Due to the special shape of these air ducts, milling would have taken a long time and required extensive preparation time and post-processing. By 3D printing the parts instead, huge costs were saved in not only time and material costs, but also with the number of employees required to support preparation and post-processing. With large-format additive manufacturing, another benefit is that many parts can be printed at the same time, allowing for optimal use of the printer’s build volume.

How to Combine 3D Printing and CNC Machining?

The advantages additive manufacturing offers can be increased even more by combining it with other manufacturing processes.  3D printed objects can be reinforced by metal parts in places where higher loads occur; insert nuts made of brass can be inserted in plastic parts. Printed parts can also be machined in order to achieve dimensions with critical tolerances or required surface qualities, or even to mill threads. Jigs and fixtures as well as clamping and positioning tools made by 3D printing facilitate working with CNC machines. By intelligently combining 3D printing and CNC machining, users can benefit from the advantages of both processes.

A perfect example of how the 3D printer is also helpful when designing and manufacturing simple jigs, like positioning or assembly tools, as shown below. In this application, Gillman at Nikola was tasked to find a way to securely hold an aluminum part in place for CMM inspection. The aluminum part itself could not have been produced by 3D printing due to very specific geometrical requirements, so it had to be milled on a CNC machine. But making the fixture from aluminum would have required open space on a CNC machine and a lot of raw material. So, Gillman decided to produce it using his BigRep PRO. From idea to part, it only took a few hours, at material costs of under 20 USD!

CNC3DP_fixture

In the last few years, Nikola Motor Company has experienced an increased shortage of materials as an ever-decreasing availability of external suppliers. Here a 3D printer offers flexibility and independence.

Riley Gillman summarizes the reasons for using his 3D printer: “Very often, we produce large parts with very challenging time limits. The geometry of the parts plays a large role; some of the parts are simply too complex to manufacture them using conventional methods. And sometimes we simply don’t have the budget to use any other process than 3D printing!”

How Can You Profit from Additive Manufacturing?

3D printing is most commonly used when large parts are required on short notice or when multiple iterations of a single part are needed. 3D printing enables you to make changes to 3D models quickly and easily, and then manufacture them in-house, massively reducing lead times. Functional prototypes are available much faster and you have a better idea of what the final product will look like.

Is it Beneficial for You to Use 3D Printing?

It is important for companies to understand the costs behind a 3D printer and what the ROI will look like. Here is a simple example: If you are paying about 5.000 USD per part with a 3D printing service and you need 4 similar sized parts per month, you will be spending about 20.000 USD a month!  When you start comparing this to what it costs to purchase a printer, it becomes apparent that buying a printer is a worthwhile investment.

Which Process is Best Suited for You?

After all these considerations, the answer “It depends!” is easier to understand. The first step should always be, deciding which technology is best for your part and its intended use. Both processes have their advantages and their own applications, so 3D printing will not fully replace CNC machining.

And if you aim to combine both processes so that they complement each other, buying a 3D printer will give you many benefits, including:

  • increased flexibility and independence
  • time and costs savings
  • expanded manufacturing portfolio
  • improved internal processes

If this sounds interesting to you, speak to one of our experts! We will show you which one of our 3D printers is best suited for you and your applications. Or send us a CAD file of a sample part, and we will calculate costs and printing time for you.

See How CNC and 3D Printing Work Together at Nikola Motor

Speaker: Riley Gillman

Riley Gillman, Technical Operations Manager at Nikola Motor Corporation, shows:

  • The Advantages and disadvantages of CNC and 3D Printing
  • Integrating 3D printing into your machine shop
  • Selecting the right manufacturing process for part
  • Cost and time savings for real custom examples
  • Understanding ROI

About the author:

Michael Eggerdinger <a style="color: #0077b5" href="https://www.linkedin.com/in/michael-eggerdinger-a45b9814" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Michael Eggerdinger

Business Manager Materials

Michael is a toolmaker, a mechanical engineer, and a patent engineer. His years of working in manufacturing and as a project manager in various industries provide him with a profound knowledge of the main challenges in modern production processes. In 2017, he bought his first 3D printer to be used at home, and he has been hooked ever since!

Fast Product Development in Commercial Vehicle Manufacturing with 3D Printing

Do you make a highly specific product that you adapt to each customer’s needs and requirements? This usually involves long iteration cycles that cost both time and money. Learn how the ZOELLER group now takes just days rather than weeks to develop and optimize its custom-made components.

 

What are the challenges of manufacturing customer-specific vehicles?

With its 2,500 employees, the ZOELLER group develops and manufactures waste collection vehicles, with a special focus on the necessary lifter systems. Its products are used around the world, so they have to meet a wide range of requirements. As well as handling different types of bins, they have to comply with country-specific legal regulations that call for different safety and protection equipment. Dr. Bojan Ferhadbegović, Head of Engineering and Design at ZOELLER, said: “These machines are used around the world. They don’t just have to be fast, they also have to be highly reliable.”

The resulting customer demands call for constant adaptation. Control elements need to be installed in covers and housings, lamps  need to be positioned correctly, and numerous sensors for process monitoring need to be integrated. The product development process is a long one, because solutions need to be developed, checked for suitability and optimized. In the past, such components had to be laboriously formed from steel sheets and then discussed with the customer once complete. As well as taking a long time to develop, these prototypes were also rather limited in terms of complexity, precision and material properties. And some requested features were impossible to provide through this process. As a result, it was necessary to create the first near-series component to get a real feel for the object’s geometry and haptics.

DSC00184

How can 3D printing resolve these problems?

Several years ago, ZOELLER decided to tackle this issue and started to move away from traditional production methods and 3D print such prototypes instead. The company benefited from this decision in many different ways. It now takes just a few days, not weeks, to turn a design into a tangible object. Design departments, production departments and customers can coordinate more quickly, which produces significantly shorter iteration cycles. Change requests are quickly incorporated in the design, and the modified part can be examined just a few days later. Printed prototypes are also easy to install in vehicles, so they can be tested in real-world conditions. Marco Neuchel, Head of Development at Zoeller, says: “The great thing about parts being available so quickly is that we can try them out immediately in field tests and with our product. That means we can test the parts within a few days and then get feedback quickly.”

As well as speeding up development, 3D printing has considerably expanded options in terms of geometry and materials. ZOELLER can now, for example, include surfaces and structures that could not be created by the traditional process. And the huge range of available filaments means that even the initial prototypes are extremely similar to the parts produced later in series, especially in terms of appearance and the behavior of the material. Using ASA, for example, makes it possible to print objects whose stiffness and haptics are similar to those of the serial parts ultimately produced by means of rotational casting.

Dr. Ferhadbegović: “Our customers have very specific requirements. So we need to produce highly specific parts incredibly quickly on request – and 3D printing is the perfect tool!”

DSC02229

How did 3D printing evolve at ZOELLER?

In the beginning, ZOELLER had 3D printed parts made by external service providers. To become less reliant on suppliers and also save time and money, ZOELLER bought a BigRep ONE in July 2019. After a short training period, it was soon possible to successfully print a range of different objects, and so the numbers of printed parts swelled quickly. The ONE was soon upgraded to tandem mode, so that parts could be printed at the same time in order to further speed up production.

Two years after purchasing its first ONE, the company decided to expand its printing capacities by buying a BigRep PRO. This allowed ZOELLER to print more than twice as fast as before, and with improved precision. The BigRep PRO is fully enclosed for improved temperature management; it can also process an even wider range of diverse materials, and thus has even more applications.

Nowadays, ZOELLER prints not just prototypes, but also production equipment. Quantities range from 2 to 2,000 units, depending on the component. A 1 cubic meter build volume allows large parts to be printed in one piece, so there is no need for bonding. Alternatively, the large printing surface can be used to produce larger numbers of multiple small objects sequentially. ZOELLER now plans to print end-use parts in small runs in the near future. Some parts are reworked, e.g. primed and painted, and then subjected to weathering tests to examine their suitability for use in all weathers.

What experiences has ZOELLER had with 3D printing and its BigRep printers?

It was not difficult for ZOELLER employees to familiarize themselves with 3D printing. They were quickly able to learn what they needed to know, and the printers were integrated smoothly into existing production processes. This is partly due to the construction and design of the BigRep PRO and the BigRep ONE, and partly to the support provided by BigRep customer service. Marco Neuchel: “The BigRep PRO has been running for more than 300 hours now, and we have not encountered any problems so far. It is a really well-designed machine! And whenever we have a question about the printers or the printing process, we can get help on the phone or via email. We are completely satisfied with BigRep!”

210389B9-928D-44BE-A354-B91BDD5621F9_1_201_a

3D printing has taken root quickly at ZOELLER, and is now an integral part of the production chain. So it’s hardly surprising that Dr. Ferhadbegović is very pleased: “3D printing has become an integral part of our development process. 3D printing is definitely the future for us!”

Want to Learn More About How 3D Printing Speeds Up Commercial Vehicle Manufacturing?

Commercial vehicles like refuse collection trucks and fire engines place high demands on their components. Learn how large-format 3D printers give companies the flexibility and versatility to iterate fast, produce faster, and get to market faster, all while reacting to challenging customer requirements on short notice. Don't miss out, watch the webinar now:

HOW 3D PRINTING IS HELPING IMPROVE TIME TO MARKET AND ENABLING CUSTOMIZATION OF COMMERCIAL VEHICLES.

INDUSTRIAL QUALITY MEETS  COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

INDUSTRIAL QUALITY MEETS COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

About the author:

Michael Eggerdinger <a style="color: #0077b5" href="https://www.linkedin.com/in/michael-eggerdinger-a45b9814" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Michael Eggerdinger

Business Manager Materials

Michael is a toolmaker, a mechanical engineer, and a patent engineer. His years of working in manufacturing and as a project manager in various industries provide him with a profound knowledge of the main challenges in modern production processes. In 2017, he bought his first 3D printer to be used at home, and he has been hooked ever since!

Cookie Consent with Real Cookie Banner