3D Printed Spare Parts: On-Demand Solutions for Aerospace, Defense, and Industrial Manufacturing

A broken or defective part could mean a reduction or even a total halt in production while waiting for the replacement to arrive – an expensive inconvenience for manufacturers.

One of the areas where 3D printing has been most disruptive is in the fabrication of temporary spare parts. These printed components can often meet functional requirements until a longer-lasting solution can be sourced or produced. This allows industries to continue production, which increases machinery uptime and minimizes supply-chain uncertainties.

In this article, we'll examine some common challenges for aerospace, defense, and industrial manufacturers, and how 3D-printed temporary solutions enable a more seamless production workflow.

1. Emergency Repairs

Imagine the scenario: You’re an industrial manufacturer relying on a machine to complete a lucrative contract for a client. Suddenly, a crucial part of the machine breaks, and production grinds to a halt.

If the replacement part isn’t at hand, you’d have to contact external suppliers for troubleshooting, components, or services. Inevitably, the time spent waiting for the part to arrive introduces an element of uncertainty into what is already a stressful situation, with an added layer of potential delays and costs.

airplane-jet-engine-cover-plastic-wrap

Why 3D Printing is a Solution

With the introduction of an in-house 3D printer, on-demand production gives industrial manufacturers the ability to produce temporary spare parts or tooling as and when required, which buffers the wait time. The range of high-performance industrial-grade 3D print materials ensures the temporary spare parts are strong enough to bear the loads and stresses until the replacement part can be sourced.

3D printers such as the BigRep PRO enable aerospace and defense manufacturers to print with engineering-grade materials, such as carbon fiber reinforced polymers, and high-performance materials like flame-retardant Polyetherketoneketone (PEKK). These materials are better suited for parts that endure fluctuations in temperature or operational stress.

2. Unavailable Spare Parts

A spare part might be inaccessible for a number of reasons. For example, it could be out of stock or it may no longer be in production. In situations where defense or aerospace manufacturers are operating in remote locations or are deployed in field operations, they could be out of reach of the traditional supply chains.

In these scenarios, the manufacturer's hands are tied, with no immediate solution to getting that all-important spare part installed to get production back up and running.

How Large-Format is Changing the Way We Produce Parts

Why 3D Printing is a Solution

A spare part might be inaccessible for a number of reasons. For example, it could be out of stock or it may no longer be in production. In situations where defense or aerospace manufacturers are operating in remote locations or are deployed in field operations, they could be out of reach of the traditional supply chains.

In these scenarios, the manufacturer's hands are tied, with no immediate solution to getting that all-important spare part installed to get production back up and running.

3. Surrogate Parts for Training

The production timeline of complex machinery might be long and at times operators might require training to handle it. Stand-in parts replicating the original designs are needed for training before the final assembly arrives so the operations can start without delay. This scenario often arises in the aerospace industry where complicated equipment is often used and time is a crucial factor given the testing, validating, and certification process of the tightly regulated sector.

BigRep Academy

Why 3D Printing is a Solution

By fabricating components, these stand-in parts offer employees a hands-on approach to familiarize themselves with the procedures and intricacies of the final machinery. This ensures operators are well versed in the assembly and servicing of the machines and allows manufacturers to accurately implement operation timelines.

Several government aerospace agencies have successfully integrated 3D printing into their operations training programs, a fact that underlines the unique advantages associated with AM. Industrial manufacturers can also leverage 3D-printed surrogate parts for a smoother workflow transition ensuring employees are brought up to speed with potentially complex operations.

Advantages of 3D-Printed Temporary Spare Parts

1. Minimized Disruption in the Production Process

3D printing spare parts on-demand addresses equipment breakdowns or component failures immediately. Defective components can be swiftly replaced, reducing downtime and enhancing operational efficiency.

One of 3D printing’s biggest strengths, quick design iterations, allows for the customization of parts to meet specific requirements, ensuring optimal performance and compatibility. This in-house solution streamlines the production timeline by decreasing the wait time for the original part to arrive, enabling industrial, aerospace, and defense industries to meet their typically tight schedules and customer demands more effectively.

Full length portrait of engine and landing gear of passenger aircraft with pilot in the wing isolated on the sun background
BigRep-PRO-2021_02

2. Reduces Downtime thereby Saving Money

Simply put, the more time that elapses between a part breaking down and its replacement being fitted, the higher the financial implication.

In this sense, traditional methods for purchasing and sourcing spare parts from external sources for industrial machinery can lead to extended periods of equipment downtime and lost productivity. Stocking replacement parts might be the obvious solution, but it comes with increased costs and additional logistics to purchase, store, and maintain the parts.

3D printing on-demand minimizes the disruption of the production process by being an immediate stand-in. This decreases the downtime and keeps the machinery moving, adhering to operation timelines. This results in positive financial implications for manufacturers within the aerospace and manufacturing sectors, who are ultimately looking for reliable solutions to unforeseeable machinery breakdowns.

3. On-Site Manufacturing is the Only Viable Option in Remote Locations

The ability to manufacture replacement solutions in any location is particularly appealing within the fields of defense and aerospace. In scenarios where on-site production is the only viable solution, for example, mountainous terrains, deserts, or at sea, having the ability to print replacement parts in-house is a game-changer. These locations are typically far from areas under operational coverage for geographical reasons, and the time for the part to arrive might be unpredictable or the logistics might be impossible.

CNE Engineering with SAS Scandanavian Airlines
3d-printer-machine-analytics4crop

4. Saves Time by Eliminating Traditional Production Steps

Where traditional manufacturing methods involve lengthy and often manual fabrication processes, 3D printing enables the direct production of parts from digital designs. This democratization of the manufacturing process skips the tooling process, reduces the dependency on skilled workers, and eliminates the maintenance of inventory and logistics. These steps in the time-consuming outdated process pile costs and 3D printing have the transformative power of directly printing on demand resulting in the economical production of spare parts.

5. Surrogate Tools for Operator Training

Time is money in most industries, and it rings particularly true in aerospace. The machinery, tools, and parts used in spacecraft and airplanes are often complicated, and operating or handling them requires training. With 3D-printed surrogate parts, they can learn how to effectively use machines before their arrival. This preemptive measure ensures accurate operational timelines, a crucial workflow addition to minimize the likelihood of inefficiencies during the production process.

3D Printed Mold for Jet Engine Cover
Blade-banner3

6. Digital Inventory Replaces Physical Inventory

Managing a physical inventory involves stocking up the approximate number of parts in the right environmental conditions by anticipating future needs. This may not always be a feasible option for spare parts as there are a lot of components involved in the production process that may break down. With 3D printing, the part design files are digital and can be transferred to any corner of the world and produced with a 3D printer. This digital optimization of inventory minimizes the effects of supply chain bottlenecks and potentially costly storage solutions.

7. Large-Scale Singular Prints Requiring no Assembly

Massive parts in airplanes and other aircraft demand large-scale MRO equipment. Traditional manufacturing processes often relied on the fabrication and assembly of multiple separate components which increased production time and the risk of assembly errors or inconsistencies. With 3D printing, the production of large, complex components in a range of materials, in a seamless integrated unit is second nature. By drawing on advantages such as accuracy, precision, and repeatability, the production of spare parts as fully assembled entities aids swift and cost-effective solutions.

3D Printing Service PARTLAB
BigRep Materials

8. A Full-Spectrum of Industrial-Grade 3D Print Materials

From eco-friendly filaments made with recycled ocean waste to high-performing carbon fiber-reinforced materials suitable for aircraft components, there’s a wide range of materials that fit the bill for different spare parts and budgets. 3D printing offers the freedom to select the filament based on the specific function of the spare part. This allows for the choice of materials that best embody the physical, chemical, and structural properties needed for optimal performance. While not all industrial 3D printer manufacturers support 3rd party filaments, some of them like BigRep have open material platforms that cater to the user’s requirements, whether it is prioritizing high performance or cost-effectiveness.

Empowered In-House On-Demand Solutions

3D-printed spare parts have unlocked an agile, responsive, and adaptable localized production workflow which is vital for the aerospace and defense industries that demand highly individualized components that may not be readily available.

By printing spare parts on demand instead of storing them in inventory, these industries can significantly save time, reduce costs, and find reliable solutions internally till the permanent part is sourced. These developments have critical advantages for the day-to-day operation of machinery, especially in remote locations where self-sufficiency is essential.

Want to learn more about how Low-Volume Production Empowers the Aerospace and Defense Industry?

Register to download the eBook, From the Print Bed to the Sky: 3D Printing Aerospace-Grade Parts.

Discover how the aerospace and defense industry leverages 3D printing to deliver purpose-built, qualified tools to explore the skies and beyond.

In this eBook, we deep dive into:

  • How 3D printed parts are instrumental in transforming the aerospace industry.
  • The rigorous tests and certifications that validate the performance and safety of the 3D-printed parts.
  • FEA analysis that helps build robust aerospace-grade parts.
  • 3 use cases of aerospace industry giants that thought out of the box with 3D printing.

FROM THE PRINT BED TO THE SKY: 3D PRINTING AEROSPACE-GRADE PARTS

INDUSTRIAL QUALITY MEETS  COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

INDUSTRIAL QUALITY MEETS COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

About the author:

Patrick McCumiskey <a style="color: #0077b5" href="https://de.linkedin.com/in/patrick-mccumiskey-b41a2699" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Patrick McCumiskey

Author

Patrick has over a decade’s worth of experience writing about design and technology. After first encountering 3D printing on a project while studying a Masters Degree in design, he’s taken a keen interest in the development of 3D printing and its impact on the world of design and tech.

Finished to Perfection: Post Processing Techniques for 3D Printed Car Parts

aftermarket_blog_photo_1 (1)

From upgrading vintage cars to powering high-performance race cars, 3D printing caters to a range of automotive applications replete with professional-grade finishes. While some prints are good to go fresh off the print bed, some need finishing touches before reaching their final functional form.

3D printing builds parts by laying layer upon layer of melted plastic leaving pronounced ridges, especially with lower print resolutions. Also, support structure removal can leave behind a marred surface that needs to be further processed. Different post-processing techniques smoothen and treat the surface to make the final part not only visually stunning but also structurally robust blending form with function.

In this guide, we explore the 3 primary post-processing types - additive, subtractive, and property-changing methods and combinations of these techniques for the finishing of the 3D-printed car parts.

Post-Processing Methods

3D Print Post Processing Powder Coating

1. Additive post-processing

adds material onto the 3D printed parts to fill in the irregularities, smoothen the surface, and enhance mechanical and functional properties.

Examples: Filling, priming, brush coating, spray coating, foiling, dip coating, metal plating, powder coating, and ceramic finishes like Cerakote coating.

2. Subtractive post-processing

takes away part of the surface to create a uniform look and feel. It is the most common post-processing method used for 3D-printed car parts.

Examples: Sanding and polishing, tumbling, abrasive blasting (sand blasting), CNC machining (milling), and chemical dipping.

The dashboard is post processed.
3D Print Post Processing Local Melting

3. Property-changing post-processing

rearranges the molecules of a 3D print’s surface to improve the strength and evenness of the object. It doesn’t add or take away from the print resulting in cleaner and stronger parts achieved from thermal and chemical treatments.

Examples: Local melting, annealing, and vapor smoothing.

While each of these methods treats the surface in different ways, depending on the function, there are tried and tested combinations for different car parts that are advantageous for aesthetics and functionality.

Aesthetic and Functional Post-Processing Techniques for 3D Printed Car Parts

Automotive Customization with 3D Printed Car Parts

The 3d printed car parts can go through a combination of finishing techniques to achieve an enhanced surface finish, geometric accuracy, aesthetics, added mechanical properties, and improved usability. While some car components like dashboards might need only sanding and coating, other parts that are load-bearing such as a wheel accessory might require sequential finishing treatments for optimal performance. Apart from the improved look and feel, the post-processing steps have added benefits such as strengthening, UV resistance, tolerance towards higher temperatures, and protecting the part from regular wear and tear like bumps and scratches.

Some of the key advantages are:

  • Smoothing the surface of printed parts to achieve roughness values acceptable for end-use parts.
  • Certain post-processing methods strengthen the prints so that they may withstand increased stress and pressure.
  • Specific additive post-processing methods can change the material properties of the surface (e.g. waterproofing, UV resistance, corrosion resistance).

1. Coating or Filling, Sanding, Painting, and Sealing

This process employs coating or filling to address surface imperfections, sanding to refine the texture, painting to add color and protection, and sealing to ensure durability.

Some of the 3D-printed car parts that are post-processed with this method are console elements, custom brackets and mounts, plate covers, fenders, and speaker covers.

3d-print-post-processing-sanding-polishing

THE PROCESS

1. Coating or Filling
The coating or filler depends on the type of 3D printing filament used as they differ in surface texture, porosity, and adhesion properties. Fill the visible layer lines, gaps, or imperfections, and allow enough time for the coating or filler to cure.

2. Sanding
Start with a coarse grit such as the 220-grit sandpaper and progressively move to finer grits. Sand the entire surface and focus on areas that are particularly notched, ensuring they are smoothened.

3. Priming
A primer adds a protective layer and preps the surface for paint adherence while also ensuring the durability of the coating. Make sure the primer is compatible with additional layers you might add later.

4. Painting
Choose automotive-grade paints for the specific 3D printing material and apply multiple coats spaced between sufficient drying time. You can explore painting techniques such as fades, gradients, or stencils to detail the part.

5. Sealing
Pick a clear automotive sealant to protect the painted surface creating an additional layer of defense against moisture, UV rays, and other environmental factors.

THE ADVANTAGES

Surface Quality

Coating and filling smoothen visible layer lines and blemishes resulting in a print with an even, aesthetic surface.

The painting process enables designers to customize the appearance, match the vehicle's aesthetic, or even integrate branding elements.

Customizable Design

Enhanced Durability

Most 3D printing materials such as PLA can degrade when exposed to elements over time. The sealant serves as a protective layer against environmental factors, maintaining its visual appeal over the long run.

A sealant creates a barrier against moisture, especially for the 3D-printed exterior car components.

Water Resistance

2. Gluing and Upholstery

Upholstering is the quickest way to make a vehicle’s interior look incredible and make a world of difference in the comfort level.  Different types of upholstery such as fabric, leather, or other materials not only protect the surface but also add softness, comfort, and warmth. Depending on what the part is used for, a layer of padding or cushion is inserted in between and glued, stitched, or stapled to reinforce the parts together. This process creates a durable bond that can withstand loads and stressors while also offering customization, durability, and tactile comfort.

Some of the car parts that are upholstered are usually interior panels on the door, dashboards, central consoles, and other parts such as car trunks.

FDM 3D Printed Car Interior

THE PROCESS

1. Select the Material
Choose a high-quality upholstery depending on the 3D-printed car part. Leather, vinyl, or Alcantara are commonly used for door panels and consoles, and polyester felt roll for the headliner or trunk of the car.

2. Adhere the Foam or Cushion to the 3D Printed Part (optional)
Measure and cut the foam or padding and use compatible glue while considering the properties of both the foam and the 3D printed part. Foam and padding are usually used for door panels and seats as they make them soft to the touch.

3. Measure and Cut the Upholstery
Trace a 2–3-inch gap on the material around the part and cut it so that there’s enough room for the material to stretch and adhere snugly to the part.

4. Apply the Adhesive
Glue the upholstery with the foam or the 3D print by applying adhesive to both parts.

5. Reinforce the Adhesion by Stapling and/or Sewing a French Seam
Stapling and stitching are other techniques that secure the material in place while also creating visual interest.

6. Trim the Excess Material
Carefully cut off any leftover upholstery, paying close attention to the corners and edges.

Types of Upholstery

The finished dashboard is installed in the car.
  1. Leather wrapped around 3D-printed parts upgrades the overall aesthetic and tactile comfort of the part.
  2. Vinyl is a popular choice as it is highly abrasion, water, and UV resistant. It mimics the look and feel of leather and is a popular choice for upholstery as it’s affordable and easy to maintain.
  3. Alcantara is a synthetic suede-like material, it's soft, durable, and frequently used for interior surfaces such as seats, door panels, and steering wheel covers.
  4. Fabrics such as cloth, microfiber, mesh, and nylon come in a wide range of textures, patterns, and colors. They are known for their comfort and abrasion resistance properties making them a good fit for interior car parts.
  5. Polyester fabrics also come in a wide range of patterns and colors and their biggest strength is that they don’t wrinkle easily.
  6. Polyester Felt Roll is made from polyester fibers that are entangled and compressed to form a non-woven fabric and are commonly used in car trunks.

THE ADVANTAGES

Tactile Comfort

Upholstery like leather or Alcantara has a texture that makes the car part soft and ergonomic, improving the user experience.

Upholstering brings different components together applying the same look and feel to the car interior creating a unified design language.

Visually Cohesive

Protection and Durability

Quality upholstery materials form a protective layer that can withstand regular usage, and resist stains, fading, and damage, ensuring a lasting visual aesthetic.

Upholstery can be designed with logos, labels, or a color scheme and tie the vehicle together visually.

Branded Customization

3. Foiling or Wrapping

Wrapping or foiling is typically for exterior parts of the car, or the entire vehicle adhered with a thin, adhesive-backed material such as vinyl. Foiling can change the vehicle's color, add graphics, or create a protective layer. If you are looking to automate the process, vacuum foiling produces quicker, precise results ensuring the material wraps around the part as perfectly as possible.

3D-printed car parts that are commonly foiled and wrapped are spoilers, fenders, side skirts, grilles, and mirror covers, as well as interior parts like the dashboard and center console.

3D Print Post Processing Foiling

THE PROCESS

1. Prepare the Surface
Ensure the surface of the 3D-printed part is clean and free of any dust, debris, or contaminants so it doesn’t come in the way of adhesion.

2. Pick the Material
Choose your foiling or wrapping material based on the finish, color, or texture you are going for.

3. Measure and Cut the Foil
Similar to the upholstering method, trace a 2–3-inch gap on the wrap around the part and cut it so that there’s enough room for the foil to be wrapped around and adhered to the part.

4. Apply it to the Part
Starting from one edge and working towards the opposite side, smooth out the wrap with a squeegee onto the 3D-printed part to avoid air bubbles or wrinkles.

5. Use a Hot Air Dryer (Optional)
Complex shapes are more difficult to foil, and it might be easier to conform the material using a heat gun or a hot air dryer set to around 70 to 85 degrees. The heat makes the wrap more flexible and bends into little nooks and crevices.

6. Trim the Excess
Once the material is applied, trim off the excess using a cutter knife, paying close attention to corners and edges for a clean finish.

Types of Wraps and Foils

  1. Carbon Fiber Wrap mimics the appearance of real carbon fiber and is often used for interior trims, exterior accents, and spoilers. While they don’t have the structural benefits of real carbon fiber, these wraps are a lightweight and cost-effective alternative.
  2. Vinyl Wraps are thin and adhesive-backed, offering flexibility and durability. They are available in a multitude of colors and finishes making them one of the most commonly applied treatments for customized car parts.
  3. Paint Protection Films (PPF) are transparent, self-healing urethane film that protects against chips and scratches while preserving the original paint color.
  4. Hydrographics or Water Transfer Printing transfers designs or patterns onto 3D printed parts by immersing them in water.
  5. Brushed Metal Wraps exude the appearance of a brushed metal surface delivering an industrial finish to the 3D-printed car part.
  6. Reflective Wraps enhance visibility in low-light conditions and make it safer to drive in the dark.
  7. Chrome Wraps are reflective, and mirror-like having a highly shiny surface. They are used to accent certain parts or at times wrap the whole car.

THE ADVANTAGES

Quick Installation

Wraps can be treated onto the car part relatively quickly compared to other post-processing methods as they involve fewer steps.

If the wrap gets damaged or the client has a change of heart, it can easily be swapped out within a short time and at a low cost.

Reversible Customization

Lack of Downtime

Unlike traditional painting, wrapping does not need extended periods in the workshop, allowing it to be on the road sooner.

Wraps are easy to clean and maintain, simplifying the process of keeping the vehicle looking fresh.

Easy Maintenance

4.  Sanding and Epoxy Coating

This technique pairs a subtractive post-processing method with an additive one to finish a part that requires a short downtime before taking its final form. The 3D-printed part’s surface is sanded to a uniform base to build upon. Epoxy, especially self-leveling epoxy, is particularly easy to use as it strikes a balance—neither too drippy nor too thick—resulting in parts with a reflective aesthetic finish and also a reliable grip.

3D-printed car parts that are sanded, and epoxy coated are mirror housings, door handles, dashboard elements, and control panels.

THE PROCESS

1. Sand the Surface
Lightly sand the surface to refine and create a gritty base the epoxy can easily adhere to.

2. Sit the Part on an Elevated Level
Using a sacrificial block or a similar tool, set the part at an elevated height so it can be painted from all sides.

3. Prepare the Epoxy Mixture
Mix the resin and the hardener in a plastic container and take care not to let the mixture sit too long before the application.

4. Apply with a Brush
With a right-sized brush, coat the epoxy evenly onto the part to a consistent finish.

5. Allow it to Cure
Give the finish enough time to become tacky before applying additional layers. As epoxy cure times can vary widely, the curing time between layers or after a final coat should be checked in the technical data sheet for the epoxy you use. Keep in mind that epoxy will cure faster in warm environments or may not cure at all if the temperature is too low. Room temperature is usually recommended for proper curing.

THE ADVANTAGES

Straightforward Process

The process of sanding and epoxy coating doesn’t require an array of tools, intricate techniques, or a high level of skill making it an easy process to execute.

The epoxy coating enhances the grip on the surface of the car part, giving you a secure and tactile surface while using it.

Improved Grip

Durable & Glossy Finish

The finish lends a long life to the coated part and imparts a glossy finish, enhancing the overall aesthetic.

This post-processing method forms a protective barrier, guarding the 3D-printed car part against wear, abrasion, and external elements. It also can penetrate porous substrates making the car parts more waterproof.

Guards Against Wear & Tear

5.  Post Processing Molds for Car Parts

3D-printed molds for car parts are produced for materials like fiberglass or carbon fiber. While post-processing them, the main goals are to have a high-quality surface finish on the final molded part and to make it easier to release the molded part. For this, the finishing process follows a sequence of steps such as filling, sanding, and sealing.

Commonly 3D-printed molds post-processed for car parts are bumpers, body panels, spoilers, side skirts, grills, and air vents.

The final carbon fibre part created with a 3D printed mold.
The final carbon fibre part created with a 3D printed mold.

THE PROCESS

1. Filling
Filling or coating smoothens out any imperfections or layer lines and creates a uniform surface on the mold. It is essential for the inside of the mold to have an even surface as any irregularities will reflect on the molded part.

2. Sanding
The mold surface is further refined by sanding with coarse grit such as the 220-grit sandpaper and you can achieve smoother finishes by advancing to finer grits.

3. Sealing
A sealant wraps up the process forming a protective layer ensuring durability, keeping moisture away, and creating a polished surface that makes it easy to release the molded part.

THE ADVANTAGES

Enhanced Surface Quality

The post-processed molds result in a smooth and refined surface delivering a higher quality impression onto the molded parts.

Sealants and coatings enhance the durability of the mold, protecting it from regular use.

Improved Mold Durability

Easy Part Removal

The smooth interior of the mold along with a mold release agent makes it easy to release the part. This safeguards the mold and the part during the removal stage.

Sealants act as a barrier against elements, preventing distortion or degradation of the mold which is particularly important when using materials sensitive to humidity.

Prevents Moisture Absorption

Time and Cost Efficiency

Investing time in post-processing molds pays off in the long run by extending mold life and reducing the need for frequent replacements.

Perfection to the Finish Line

Automotive-industry-3d-printing-Bigrep

Post-processing parts are more than just the surface level.

They are no longer an afterthought but a strategy to stay ahead of the curve and deliver top-notch aftermarket services by producing quality end-use car parts with professional-grade finishes. Leveraging finishing techniques improves functionality, saves time and money, strengthens parts, and ensures superior 3D printed products and services for the automotive car aftermarket.

Want to learn more about Post-Processing 3D-Printed Car Parts?

Register to watch the webinar, Ideation to Installation: 3D Printed Parts for Aftermarket Car Customization

From fabricating carbon fiber molds to perfectly finished speaker enclosures, the automotive aftermarket explores all avenues of 3D printing applications. Hear from JT Torres, owner of Automotive Entertainment, about how 3D printing takes the front seat in delivering bespoke interior door panels, center consoles, and a range of custom car parts.

IDEATION TO INSTALLATION: 3D PRINTED PARTS FOR AFTERMARKET CAR CUSTOMIZATION

About the author:

Natasha Mathew <a style="color: #0077b5" href="https://www.linkedin.com/in/natasha-mathew/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Natasha Mathew

Copywriter

Natasha Mathew enjoys trying new things and one of them she’s currently obsessed with is 3D printing. Her passion for explaining complex concepts in simple terms and her knack for storytelling led her to be a writer. In her 7 years of experience, she has covered just about any topic under the sun. When she’s not carefully weighing her words, she’s reading, crafting, spinning, and adventuring. And when asked about herself, she writes in the third person.

The Definitive Guide to 3D Printing: The Past, Present, and Future

BigRep ONE.4 Large-Format 3D Printer

From its humble beginnings as a niche technology for rapid prototyping to its current spectrum of capabilities to create forms that are virtually impossible to build any other way, 3D printing has spawned a brand-new generation of manufacturing.

In this article, we’ll take a look at the origins of 3D printing, its big moments in history, applications, and explore the future it holds.

1. The Basics of 3D Printing

What Is 3D Printing and How It Works

3D printing, also known as additive manufacturing, is a process of building a physical object from a three-dimensional digital model. It creates an object by laying down successive thin layers of a material such as plastic, metal, resin, or even biomaterials—based on a digital design created using computer-aided design (CAD) software.

3D Print Speed

The process begins with the digital 3D model sliced into numerous thin layers. The 3D printer then follows these instructions, precisely depositing material layer upon layer, gradually constructing the physical object. This technology has found applications across a gamut of industries, including aerospace, healthcare, automotive, fashion, architecture, and more.

Types of 3D Printing Materials

3D printing materials can be categorized under:

  1. Plastics (PLA, ABS, PETG, nylon)
  2. Metals (stainless steel, titanium, aluminum, copper)
  3. Resins (standard, flexible, tough, castable)
  4. Ceramics (porcelain, stoneware, earthenware)
  5. Wood pulp with a binding polymer (Bamboo, Birch, Maple, Cherry)
  6. Composites (carbon fiber, fiberglass)
  7. Paper-based (cardboard and paper)
  8. Food-based (chocolate, dough, sugar)
  9. Bio-based (living cells and tissue)

The History

Evolution and history of 3D printing

The roots of 3D printing go back to the 1980s when visionaries like Hideo Kodama proposed methods for fabricating three-dimensional models using photopolymers solidified by UV light. Around the same time, Charles Hull pioneered stereolithography, patenting the concept in 1986. This technique employed UV light to solidify layers of liquid photopolymer resin, laying the groundwork for additive manufacturing. Subsequent decades saw the evolution of various printing methods like Selective Laser Sintering (SLS) and Fused Filament Fabrication (FFF), expanding material options and applications.

By the 2010s, 3D printing had become more accessible, integrating into industries such as aerospace, healthcare, and automotive manufacturing. Bioprinting also made strides, enabling the printing of living tissues and organs. Today, 3D printing stands as a transformative force, reshaping manufacturing, rapid prototyping, and medical advancements through its capability to produce intricate designs with precision and speed.

The advantages

Benefits of 3d printing Across Industries

Rapid Prototyping

3D printing enables quick and cost-effective prototyping, allowing designers and engineers to iterate designs swiftly, reducing time-to-market for new products.

Highly individualized products can easily be produced catering to specific needs and preferences without significantly increasing production costs.

Customization

Complex Geometry

Unlike traditional manufacturing methods, 3D printing can create intricate geometries and complex designs that would be challenging or impossible to achieve otherwise.

Additive manufacturing is inherently more efficient, as it typically uses only the materials necessary for the object being printed, minimizing waste.

Reduced Material Waste

Supply Chain Efficiency

On-demand production enabled by 3D printing reduces the need for large inventories and streamlines the supply chain by producing parts as needed.

For small batches or low-volume production, 3D printing can be more cost-effective than traditional manufacturing methods due to lower setup costs.

Cost-Effectiveness

Innovation in Medicine

Creating patient-specific implants, prosthetics, and medical models for surgical planning requires precision and customization which 3D printing delivers effortlessly.

3D printing has become an invaluable tool allowing students and researchers to visualize concepts and create prototypes to test theories in various fields.

Education and Research

2. Common Types of 3D Printing Technologies

BigRep One - Amir & Bea

Fused Filament Fabrication (FFF)

FFF is one of the most common 3D printing methods. It works by melting a thermoplastic filament and depositing it layer by layer through a heated nozzle onto a build platform. As each layer cools, it solidifies, gradually building the object. FFF is known for its simplicity, affordability, and versatility, making it popular for hobbyists and prototyping.

Stereolithography (SLA)

SLA employs a vat of liquid photopolymer resin and uses a UV laser to solidify the resin layer by layer, building the object from the bottom up. The UV laser traces the shape of each layer onto the surface of the liquid resin, solidifying it. SLA is known for producing high-resolution, detailed prints, making it suitable for applications requiring precision, such as dental and medical prototypes.

SELECTIVE LASER SINTERING (SLS)

SLS uses a high-powered laser to selectively fuse powdered material, typically nylon or other polymers, into a solid structure layer by layer. Unlike SLA or FFF, SLS doesn't require support structures as the unsintered powder acts as a support. SLS offers design flexibility and can produce complex geometries and functional prototypes with robust strength, making it common in the aerospace and automotive industries.

POLYJET PRINTING

PolyJet technology operates similarly to inkjet printing but with layers of liquid photopolymer cured by UV light. Tiny droplets of liquid photopolymer are instantly cured by UV light, solidifying it, layer by layer, onto a build tray. PolyJet printers can produce multicolor, multi-material parts with high accuracy and fine details. It's often used in industries requiring high-resolution models, such as product design and architectural prototyping.

3. Real-World Applications Across Industries

Advancing-Additive-Manufacturing-in-Aerospace_Hero

1. Aerospace and Defense

Lightweight yet durable components are the lifeblood of the aerospace and defense industry. Components like turbine blades, fuel nozzles, brackets, and even entire rocket engines can be 3D printed. This results in reduced component weight, improved fuel efficiency, and enables rapid prototyping for testing different designs.

2. Automotive

In the automotive industry, 3D printing is used for rapid prototyping, and creating functional prototypes for testing and validation before mass production. Additionally, it's utilized for manufacturing parts like engine components, interior elements, custom tooling, and even entire vehicle bodies. The technology allows for quicker design iterations and the production of complex parts, enhancing overall efficiency in the automotive manufacturing process.

Car Restoration: 3D Printed Center Console
FDM vs SLS Healthcare: 3D Printed Wheelchair

3. Medical and Dental

3D printing has transformed the medical and dental fields by enabling the production of patient-specific implants, prosthetics, and surgical tools. In dentistry, it's used to create crowns, bridges, and dental models tailored to individual patient needs. In medicine, it's utilized for creating anatomical models for surgical planning, prosthetic limbs, customized orthopedic implants, and even bioprinting tissues and organs for transplantation and research purposes. These offerings deliver personalized solutions and improve patient outcomes.

4.  Consumer goods

Embraced by leading companies across sectors like consumer electronics and sportswear, 3D printing has democratized manufacturing processes with the accessibility of industrial 3D printers. This accessibility empowers designers and engineers to delve into its immense potential. Its benefits include expediting product development through rapid prototyping, accelerating time-to-market, and enabling mass customization by efficiently catering to individual consumer preferences.

BigRep ONE 3D-Druck-Service
3D Printed Jigs and Fixtures Ebook

5. Industrial Applications

The industrial goods sector, pivotal in machinery and equipment production, grapples with the need for agility and cost-effectiveness amid escalating costs and digital advancements. To address these challenges, manufacturers turn to 3D printing for its agility, responsiveness, and innovation. Its advantages lie in rapid prototyping, on-demand production, slashing design change times, and cutting lead times by eliminating tooling requirements.

4. Seven Steps to Find the Right 3D Printer

Building on the foundation of 3D printing basics, types, and applications, you can now quickly narrow down the vast choice of 3D printers by considering factors like:

1. Type of Printer

Consider various technologies such as FFF (also called FDM), SLA, and SLS. Inexpensive desktop FFF printers may suit hobbyists, while SLA and SLS offer higher accuracy at a higher cost.

2. Cost of the Printer

Entry-level printers cost less than $500, while industrial-grade printers can go up to hundreds of thousands of dollars. Also, factor in maintenance and filament costs.

3. Printer Size and Volume

Evaluate available space and print size needs. Beginners may opt for smaller, faster printers while for industries it’s recommended to invest in large-format 3D printers.

4. Print Quality and Speed

Take resolution, layer height, and print speed into consideration. Higher resolution often means slower speed and vice versa.

5. Ease of Use

Look for user-friendly interfaces, easy calibration, automation, and reliable performance. Consider reviews for insights into reliability.

6. Support and Maintenance

Check for maintenance instructions, available replacement parts, and technical support. Some companies offer less expensive, build-your-own 3D printers while others offer a full-service package. Also look for community support as it can be a holy grail in troubleshooting your 3D printer.

7. Additional Features

Consider extras like multiple extruders for varied prints, auto-calibration, built-in cameras, touchscreen displays, proprietary 3D software, and internet connectivity based on personal needs and budget considerations.

5. The Future Of 3D Printing

BigRep PRO on MARS

3D printing holds vast unexplored potential to reshape our everyday lives by offering innovation, customization, sustainability, and efficiency through:

  1. Diverse Use of Material
    Expect a widening array of printable materials, including advanced polymers, metals, ceramics, and bio-compatible substances, expanding the scope of applications.
  2. Accessibility
    As technology progresses, 3D printing might become more accessible, affordable, and user-friendly, potentially integrating into everyday homes and workplaces.
  3. Sustainable Manufacturing
    Efforts towards eco-friendly printing using recyclable materials and reducing waste during the printing process are gaining traction, contributing to sustainable manufacturing practices.
  4. Bioprinting and Healthcare
    Advancements in bioprinting may revolutionize healthcare by facilitating the creation of tissues, organs, and medical implants, leading to personalized healthcare solutions.
  5. Integration with AI and Robotics
    The fusion of 3D printing with AI and robotics could streamline and automate the entire printing process, enhancing efficiency and precision.
  6. Space Exploration
    3D printing's potential for on-site construction using locally available materials might revolutionize space missions and support off-world colonization.

Past production advancements were typically gradual, building upon iterations by refining production lines and inventory systems. In contrast, 3D printing reimagines production at a fundamental level. It simplifies, accelerates, and streamlines the creation process using a single machine, deviating from the reliance on a string of machines.

This paradigm shift is why most industries invest in this technology, firmly believing in the promise 3D printing holds in exploring untapped industrial applications in the manufacturing sector. From the invention of the telephone to the personal computer, there have been milestones in human history when a technology has completely transformed society. Now is one of those times.

Want to learn more about Large-format Additive Manufacturing?

Download the eBook Guide to Integrate Large-Format Additive Manufacturing.

Explore how increasing the build size increases the possibilities for builds, why size matters, how to integrate, 4 applications that benefit from large-format additive, case studies from industry-leading companies like Ford, Steel Case, and more.

GUIDE TO INTEGRATE LARGE-FORMAT ADDITIVE MANUFACTURING

INDUSTRIAL QUALITY MEETS  COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

INDUSTRIAL QUALITY MEETS COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

About the author:

Natasha Mathew <a style="color: #0077b5" href="https://www.linkedin.com/in/natasha-mathew/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Natasha Mathew

Copywriter

Natasha Mathew enjoys trying new things and one of them she’s currently obsessed with is 3D printing. Her passion for explaining complex concepts in simple terms and her knack for storytelling led her to be a writer. In her 7 years of experience, she has covered just about any topic under the sun. When she’s not carefully weighing her words, she’s reading, crafting, spinning, and adventuring. And when asked about herself, she writes in the third person.

How To Pick A 3D Scanner For The Automotive Aftermarket

3D scanner for car customization - feature image

In the realm of aftermarket car customization, automotive 3D scanners can be the overlooked workhorse that brings physical objects into the virtual space. While some car components might have readily available 3D models, designing individualized or original 3D prints needs 3D scanners to recreate an object’s geometry accurately in a simulated environment. The 3D scanner does this by capturing millions of data points from all angles of the part and in minutes you have a complete digital clone of it. This virtual version serves as a three-dimensional test bed to build and iterate concepts swiftly before going into prototyping and production.

3D Scanner car customization

 

Typically, large-format 3D printers come into the picture when printing car parts or bespoke components like dashboards, consoles, and door panels. Coupled with 3D scanning technology, you get visually aesthetic and highly functional parts. 3D scans seamlessly integrate with large-format 3D printers and streamline the process from the outset saving time, effort and money, resulting in exceptional print quality with fewer failed prints.

So How Do You Pick A 3D Scanner That’s A Good Fit For Your Workshop?

To get to the bottom of this, we will explore:

1. Why Is 3D Scanning Important?

3D scanning offers endless possibilities for customization with which you can design and produce components quickly with a high level of precision and accuracy.

Quality Control

The virtual 3D model can be evaluated to make sure every aspect of the part is precisely measured and is within the specified tolerances.

Reverse Engineering

A 3D scanner captures complex geometries with high-quality CAD files when none are available, improving project results by removing the guesswork.

Simpler Prototyping

Modifying and optimizing prototypes digitally before printing them ensures accuracy in producing complex shapes.

Quicker Design Cycles

Scanning the object that the 3D part is being designed for reduces production time and ensures a perfect fit of the 3D-printed part.

Accurate Measurements

Measuring the component, including details in narrow and hard-to-reach spaces, can be scanned for precise dimensions.

Cost-Effective

With 3D scanning, virtual testing reduces the need for physical prototypes. Also, the chances of fewer failed prints bring down costs significantly.

2. How Does 3D Scanning Work?

3D scanners create high fidelity, visual, three-dimensional virtual models by capturing 3D surface data from an object. It uses technologies such as Laser Triangulation, Structured Light Scanning, Photogrammetry, and Time-of-Flight Scanning to recreate the shape, color, and texture of a component digitally. Apart from bringing physical objects into the digital world, you can use the 3D data for inspection, dimensional analysis, reverse engineering, remote part replication, and CAD model validation for 3D printing.

Time-of-Flight Scanners

3. What Are the Different Types Of 3D Scanners?

There are a range of technologies for 3D scanners, and each comes with its advantages, limitations, and cost. The compatibility of different types of 3D scanners with large-format 3D printing depends on factors like scanning range, resolution, scanning speed, and the level of detail necessary for printing the vehicle’s part. Here are the different types of 3D scanners and their potential to integrate with large-format 3D printing:

3D Scanner For The Automotive Aftermarket

1. Laser Triangulation Scanner

This scanner projects a laser line or dot pattern onto the object and captures its reflection angle with sensors to replicate the shape. It is usually used for smaller objects, but it also scans the geometry of larger formats.

2. Structured Light Scanner

A Structured Light Scanner projects light in the form of lines onto the object and analyzes the field of view to generate a 3D model. It works well with large objects as it can capture complex shapes and details and has a large scanning range.

Laser Triangulation Scanners
Time of flight 3D scanner

3. Photogrammetry Scanner

Instead of using active light sources, the Photogrammetry Scanner reconstructs a 3D model digitally with multiple photographs taken from different angles. Photogrammetry is commonly used in large-scale applications like architecture and landscape scanning.

4. Time-of-Flight Scanner

The name "Time-of-Flight" may seem somewhat arbitrary for a camera-like scanner, but it gets its name from the underlying principle it is based on. This scanner emits light and measures the time it takes for the light to bounce back from the object's surface. It can capture large objects easily and is used for large-format 3D printing projects.

Time of flight scanner

4. What Is The Scan-To-Print Workflow?

Scan-to-print workflow is exactly what it says - it’s the steps involved in transforming a 3D scan into a printable model. After capturing the object using a 3D scanner, the 3D data is processed and cleaned with a specialized software. Next, the scanned model is converted into a 3D printable format like an STL file. Finally, the model is prepared for large-format 3D printing by optimizing the orientation, adding support structures, and slicing the model into layers.

STEPS FOR A 3D SCAN-TO-PRINT WORKFLOW

1. Scan the Object

With a high-precision scanner of 100 microns± accuracy, scan the object.

2. Refine the Mesh

Clean up the scan data with scanner software that’ll repair small gaps and simplify the scan.

3. Edit the Model

Refine the 3D model using CAD software by combining multiple scans if necessary.

4. Slice the
File

Translate the 3D model into instructions for the 3D printer with slicing software.

5. Prepare for Print

Set up the printer with the printing filament and configure the device's parameters.

6. Get 3D
Printing

Print the part with an industrial printer perfect for automotive customization like the BigRep STUDIO.

7. Post-Process the Part

Wrap up the process by removing support or excess material, sanding or polishing the part.

STEPS FOR A 3D SCAN-TO-PRINT WORKFLOW

1. Scan the Object

With a high-precision scanner of 100 microns± accuracy, scan the object.

2. Refine the Mesh

Clean up the scan data with scanner software that’ll repair small gaps and simplify the scan.

3. Edit the Model

Refine the 3D model using CAD software by combining multiple scans if necessary.

4. Slice the File

Translate the 3D model into instructions for the 3D printer with slicing software.

5. Prepare for Print

Set up the printer with the printing filament and configure the device's parameters.

6. Get 3D Printing

Print the part with an industrial printer perfect for automotive customization like the BigRep STUDIO.

7. Post-Process the Part

Wrap up the process by removing support or excess material, sanding or polishing the part.

5. What Type of 3D Scanner Is Best for Aftermarket Automotive Customization?

3D scanner for car- structured light

For aftermarket car customization and large-format 3D printing workflows, two commonly used 3D scanning technologies are Structured Light Scanning and Laser Triangulation Scanning. Structured Light gives you high accuracy, making it the perfect choice for capturing intricate car details. While Laser Triangulation captures the overall shape and geometry of larger subjects like car bodies.

A handheld 3D scanner using Structured Light or Laser Triangulation would be the answer for your automotive scanning needs. Handheld 3D scanners offer mobility and flexibility, allowing you to scan objects directly from the car or at any location the vehicle is at. This comes in handy for on-site customizations or restoration projects.

When selecting a handheld 3D scanner, consider factors like scanning accuracy, resolution, ease of use, compatibility with different surface types (reflective or transparent surfaces), and the software used for data processing.

Print Your 3D Scans to Life

2019-10-19_BigRep-Studio-G2_DSC8837_2000px_sRGB

Now it’s time for your design to come to life layer by layer.

This is where BigRep 3D Printers come in. Learn how our 3D printers can give you the transformative power of creating custom car parts that were once concept in your garage. Contact our team today, let us help you THINK BIG!

GRADUATE FROM DESKTOP. GET INDUSTRIAL.

The BigRep STUDIO G2 gets 3D printing off your desk and takes it to the next level. Operating with the same ease as a desktop 3D printer and with 10 times the build volume, the STUDIO G2 provides large-scale industrial manufacturing capabilities in a compact “fits everywhere” build.

Explore the STUDIO

GRADUATE FROM DESKTOP. GET INDUSTRIAL.

The BigRep STUDIO G2 gets 3D printing off your desk and takes it to the next level. Operating with the same ease as a desktop 3D printer and with 10 times the build volume, the STUDIO G2 provides large-scale industrial manufacturing capabilities in a compact “fits everywhere” build.

Explore the STUDIO

About the author:

Natasha Mathew <a style="color: #0077b5" href="https://www.linkedin.com/in/natasha-mathew/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Natasha Mathew

Copywriter

Natasha Mathew enjoys trying new things and one of them she’s currently obsessed with is 3D printing. Her passion for explaining complex concepts in simple terms and her knack for storytelling led her to be a writer. In her 7 years of experience, she has covered just about any topic under the sun. When she’s not carefully weighing her words, she’s reading, crafting, spinning, and adventuring. And when asked about herself, she writes in the third person.

Massive Benchy 3D Print as a Benchmark for Large-Format 3D Printers

The most frequently 3D-printed object in the world, 3D Benchy, is a 3D model in the shape of a boat that was designed as a benchmark to test all sorts of 3D printing parameters. BigRep put its large-format 3D printers to the test by producing the world's largest Benchy, measuring at 816 mm tall. Let's have a close look at this giant Benchy and what its features can show about BigRep 3D printers' capabilities.

What is a 3D Benchy?

A 3D Benchy is a computer model that is specifically designed to test the capabilities of a 3D printer. Its name derives from "benchmark," which reflects its relevance in 3D printing. The Benchy was first released as an STL file in 2015 and is often the first thing one prints with a new 3D printer it has a set of features that determine the printer's capabilities and possible limitations.

benchy_timelapse_short332_x

Benchy Features

The most common Benchy features include overhangs, bridges, surface finish, and dimensional accuracy. These features are all important in 3D printing, and help evaluate the printer's ability to produce intricate designs, handle complex geometries, and maintain precise measurements. By looking closely at the quality of Benchy prints, one can identify issues or limitations with their 3D printer and make necessary adjustments for better results.

overhang dfam

Overhangs

Overhangs are horizontal or inclined surfaces extending beyond more vertically oriented parts of a 3D print. Successful overhangs showcase the printer's ability to handle complex geometries and maintain structural integrity without supports.

Bridging - Design for Additive Manufacturing

Dimensional Accuracy

The 3D printed Benchy's dimensions can be compared to the 3D model's original specifications. Accurate dimensional reproduction is an important indicator of a printer's ability to maintain precise measurements and avoid scaling issues.

Bridging front view - Design for Additive Manufacturing

Bridges

Bridges are horizontal gaps between two vertical structures. Bridges demonstrates the printer's ability to create even and sturdy horizontal spans, without sagging or drooping in the middle. The length of possible bridges depends on a printer's capabilities, slicing settings, and material used.

Part Orientation - DfAM

Surface Finish

The surface finish of the Benchy model is an essential feature to evaluate. The smoothness, texture, and overall appearance of the 3D printed Benchy can be examined for any imperfections such as layer lines, warping, or inconsistent extrusion, which can affect the final print quality.

Benchy in BigRep PRO

Advantages and Challenges of Printing 3D Benchy

The Benchy is widely recognized in the 3D printing community for its successes and challenges. One of its major strengths is its ability to assess various 3D printing technologies and how they work with various materials. This versatility allows users to evaluate the capabilities and performance of different printers and materials, providing a first-hand understanding of their strengths and weaknesses. Another advantage of using the Benchy is its focus on evaluating print quality and accuracy. By using it as a test model, users can assess the level of detail, dimensional accuracy, and surface finish achieved by their 3D printers. This information is crucial for ensuring the desired level of quality in the final printed objects.

However, where there are opportunities, there are also challenges. One of the major challenges is the time-consuming nature of the test. The benchmark requires printing a complex model, which can be lengthy, resource-intensive, and particularly demanding for users who need quick results or have limited resources at their disposal.

Another limitation of the Benchy is that it may not fully represent real-world printing scenarios. While it is designed to incorporate various features and geometries to challenge printers, it may not capture all the complexities and nuances of real-world objects, potentially leading to limitations in its usefulness as a benchmark for real-world applications.

Benchy in BigRep BLADE
Giant BigRep Benchy

BigRep Benchy Specs

The world's largest Benchy was printed at the BigRep headquarters in Berlin. And while it is definitely a huge 3D print, it was not BigRep's biggest, heaviest, or longest running print.

Here are the printing specs for the BigRep Benchy:

  • Printer: BigRep ONE
  • Material: BigRep PLA
  • Nozzle Diameter: 1.0 mm
  • Layer Height: 0.6 mm
  • Dimensions: 864 x 864 x 816 mm (x, y, z)
  • Printing Time: 121 hours
  • Material Weight: 11.1 kg
Giant_Benchy_Nika_ONE

How Does the BigRep Benchy Measure Up?

While it's a beloved and whimsical 3D model, Benchy does also function as a useful benchmark to evaluate a wide range of 3D printing parameters. Let's have a closer look at the giant Benchy results.

Giant BigRep Benchy Overhangs

Overhangs

The layer height, nozzle diameter, and overall 3D print dimensions greatly effects the quality of overhangs. This gigantic Benchy has large overhangs spanning ranges up to 50 mm long. They were not printed with support to help demonstrate the limits of the printer's capabilities. The BigRep ONE achieved an even, consistent quality with minimal deviations in layer appearance.

Giant BigRep Benchy Dimensional Accuracy

Dimensional Accuracy

Accuracy is highly dependent on what tolerances are required for a part to be acceptable for its use case. There is no noticeable warping of this giant Benchy and only small deviations in layer quality in the most challenging aspects of the print. For a real-world accuracy analysis, a 3D scan of the print can be compared to the original design to determine tolerance.

Giant BigRep Benchy Bridging

Bridges

Some of the bridges in Benchy are too long - in this case, up to 180 mm - to be printed without sagging, and therefore required support. The image above shows the top section of some circular cutouts which were printed without support. There are some slight imperfections, but the overall quality is surprisingly good at such a large scale.

Giant BigRep Benchy Surface Finish

Surface Finish

The more vertically oriented the surface, the smoother the appearance of the layer lines. As a surface is more horizontal, the layers become more pronounced with the appearance of the staircase effect. With a relatively large layer height of 0.6 mm, the differences between vertically and horizontally oriented surfaces is visually apparent.

Conclusion

The Benchy 3D model has become a cornerstone in the world of 3D printing, serving as a reliable benchmark for evaluating the capabilities and limitations of different 3D printers. Its various features, such as overhangs, bridges, surface finish, and dimensional accuracy, provide valuable insights into the printer's ability to handle complex geometries and produce high-quality prints. By closely examining the quality of Benchy prints, users can identify issues with their 3D printers and make necessary adjustments to achieve better results.

However, it is important to acknowledge possible challenges with using the Benchy. The test can be time-consuming and resource-intensive, which may not be ideal for users who require results very quickly or have limited resources, such as filaments. Moreover, the model may not fully capture the complexities and nuances of real-world printing scenarios, potentially limiting its usefulness in certain applications.

Nevertheless, the Benchy remains a valuable evaluation tool within the 3D printing community. It provides a comprehensive assessment of printer capabilities, highlights potential areas for improvement, and allows users to make informed decisions when selecting printers and materials for their projects. By understanding its strengths and limitations and using it with other evaluation methods, users can maximize the benefits of the Benchy for their specific printing needs and applications.

Want to learn more about large-format additive manufacturing?

Register to download the eBook, Guide to Integrate Large-Format Additive Manufacturing.

Learn how Increasing the build size increases the possibilities for builds: users can create larger parts, removing the constraints of more standard sizes of build envelopes. 3D printing a large part all at once means less time is spent designing around multiple print jobs, less time assembling multiple parts, and more time getting those parts to work for you. Don't miss out, download the eBook today:

GUIDE TO INTEGRATE LARGE-FORMAT ADDITIVE MANUFACTURING

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

About the author:

Nika Music <a style="color: #0077b5" href="https://www.linkedin.com/in/nika-music-2301/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Nika Music

Digital Marketing Specialist

Nika is a Social Media Manager with a background in the philosophy of technology. After obtaining their MA, Nika's passion and expertise in this field naturally guided them towards the exciting world of 3D printing. Currently, Nika is thriving at BigRep, enhancing the company's social media presence and creating brand awareness.

How to Overcome Six Common Manufacturing Challenges

Whether you are an experienced manufacturer or a new entrepreneur, the business landscape is continually evolving with greater acceleration and more significant changes.

In this article, we will consider six common challenges for manufacturers and how they can be overcome with smart solutions that really work. By anticipating these issues rather than firefighting problems as they arise, you can secure a more sustainable business model to scale your business and grow revenue.

Let’s explore six manufacturing challenges producers face and how you can ensure success for your business.

1. Lack of Skilled Workers

CHALLENGE

A troubling trend is steadily rising around the globe: the lack of skilled workers in the manufacturing sector. This is the product of lower employment rates in many countries, an aging workforce, a lack of tech-savvy labor, and the effects of the COVID-19 pandemic, just to name a few factors. A report by The Manufacturing Institute and Deloitte Consulting concludes that 22% of workers in U.S. manufacturing will be retiring in the next ten years. Additionally, they predict that the manufacturing skills gap could result in 2.1 million unfilled jobs by 2030. A report by Eurofound in 2019 found that Europe is not exempt from these struggles, as 39% of European manufacturing companies reported that their production was limited by labor shortages. This year, the German Chambers of Commerce and Industry (DIHK) explained that more than half of Germany's companies struggle to fill vacancies due to a lack of skilled workers.

SOLUTION

The accessibility of 3D printing technology, also known as additive manufacturing, allows a broader range of workers, including those with limited traditional manufacturing skills, to aid in product development, low-volume production, and full-scale manufacturing. 3D printing simplifies the production process by creating complex parts and prototypes directly from digital designs, carrying out intricate manufacturing processes with minimal human intervention. This reduces the need for highly skilled labor to operate machinery and perform manual tasks.

One solution to simplify the digital design process is scanning an existing part to create a 3D model, which can be 3D printed. Another option is using a design configurator to customize and adapt 3D-printable designs without needing in-depth design expertise. To learn more about design configuration, have a look at BigRep FLOW configurator apps.

BigRep PRO 3D Printer

2. Inventory Management

CHALLENGE

Inventory management can be a real puzzle for manufacturers. Picture this: You've got to predict what customers want, but their desires are like a roller coaster, up and down. Plus, suppliers might send things late, putting your production on hold. Holding onto too much inventory costs you money, but running out is a disaster. And don't forget about products that can go bad or become outdated fast. It gets even trickier when you have many different products to handle, and deciding which ones to keep or drop is no simple task. Then there's the balancing act between having just enough inventory when you need it and keeping extra in case things go unexpectedly.

Forbes reports that today’s average manufacturing company carries thirty days more inventory than at the beginning of 2007. While adequate inventory is a crucial buffer for supply chain issues, it is also the primary source of waste for companies. Holding excess inventory ties up capital and incurs costs such as storage, insurance, and depreciation. In a world where everything is always changing, figuring out how to handle your inventory is like playing a game of strategy to stay ahead in the manufacturing world.

SOLUTION

As a means of rapid production, 3D printing allows for just-in-time manufacturing, where parts are produced precisely when they are needed. Thanks to significantly reduce lead times compared to traditional manufacturing methods, you can quickly respond to changes in customer demand to deliver on time. Often called the digital warehouse, 3D designs can be stored on a cloud or server to be 3D printed once an order is placed. This also reduces the risk of overproduction and minimizes the cost of holding excess inventory. The number of business 3D printing components, products, and spare parts on demand is steadily increasing with early adopters such as Deutsche Bahn, Bentley, Miele, and Shell, leading the way. If you want to learn more about 3D printed spare parts on demand, read the eBook Deutsche Bahn Goes Additive with BigRep.

3d-printer-prediction

3. Supply Chain Dependency and Transparency

CHALLENGE

As a manufacturer, you always depend on suppliers for materials, components, and services. However, each supply chain dependency introduces a potential risk of delays, lack of availability, or price increases. As your business grows, so do the potential risks of supply chain failures along with the complexity of logistics. And as we saw with the global supply chain gridlock during COVID-19, one issue can have massively far-reaching repercussions.

In addition to these practical supply chain concerns, consumers increasingly demand greater manufacturing transparency from companies. Today's customers prioritize quality and ethically produced items, plus they're willing to spend more for those products. A study conducted by researchers at the MIT Sloan School of Management revealed that consumers may be willing to pay an additional 2% to 10% for products with greater supply chain transparency. So, not only do manufacturers need to manage their supply chains to keep their business running, but they must also consider how those supplier choices will affect consumer confidence. 

SOLUTION

With additive manufacturing, companies can produce locally, reducing dependence on distant suppliers and minimizing the impact of global disruptions. By using a digital warehouse, you can even produce locally with distributed manufacturing from afar: send your 3D file to be printed on location wherever the part is needed, With greater control of your supply chain, you also have more influence over lead times and fewer unexpected or increased costs. 

By implementing 3D printing for in-house production, tracking and controlling your supply chain is much easier, allowing you to satisfy consumers' growing demand for transparency. You own your own production process, plus fewer steps and logistics require oversight. Localized manufacturing can allow more environmentally friendly production with reduced shipping and other logistics. For more information about how 3D printing can reduce supply chain dependency, read the eBook How to Reduce Lead Times with In-House Supply Chains.

Design for Additive Manufacturing (DfAM)

4. Mass Customization

CHALLENGE

An increasing number of industries and businesses are embracing the trend of mass customization. This movement encompasses well-established brands that have introduced customization features to expand their product offerings and boost their sales. It also includes niche manufacturers and startups, which benefit from not having costly legacy factories and intricate supply chains. Forbes claims that custom products are the future of small and medium-sized businesses, and The Deloitte Consumer Review reported that more than 50% of consumers showed interest in purchasing personalized products.

Customers are willing to pay more for unique products, and traditionally, manufacturers also spend more to produce them. For example, many plastic products are produced using expensive CNC-milled molds. This is cost-effective at scale, but the costs skyrocket for low-volume and unique production. Manufacturers are faced with the challenge of how to produce customized products at scale in a cost-effective way.

SOLUTION

With additive manufacturing, there are no added costs in unique and low-volume production. That means you can print identical or modified products, and the only factors changing the manufacturing costs are material usage and printing time variations. You have the greatest freedom of customization without added costs when 3D printing end-use parts and products. While traditional tooling, such as CNC-milled molds, is durable and long-lasting, the cost is prohibitive for single or limited use. 3D printed tooling may be less durable but can be the perfect solution for limited production and robust enough to get the job done. Read this blog to learn more about mass customization and the power of 3D printing.

Airbus

5. Scaling Your Business

CHALLENGE

One of the most unexpected challenges that manufacturers encounter is choosing the right time to scale your business.  Scale up too early and you risk financial strain, operational challenges, and loss of quality. Scale too late and risk market saturation, missed opportunities, and a competitive disadvantage to more established companies. To decide when the time is right, you need to ask yourself the right questions. Is your product ready for market? If your product is not performing well, do you need to pivot the product offering or redesign it? Do you have the capacity to meet production requirements if demand increases? 

SOLUTION

To ensure adequate quality, good product-market fit, and best product offering, you need to iterate your product design. With traditional production methods, this typically requires outsourcing and/or hand-made prototypes, and unfortunately, both of these are expensive and slow to produce. 3D printing is widely accepted as the best solution for rapid prototyping, so much so that the two are practically synonymous. Additive manufacturing lets you quickly produce a design or functional prototype, make changes as needed, and reprint until your product is perfect.

Large-format 3D printing also allows you to produce larger prototypes in full scale. If you find that your product is not performing well after you launch, you can repeat the iteration cycle to change the product as needed. And what if your product is perfect and demand is high? 3D printing can help you meet those demands with in-house production, simplified logistics, and reduced supply chains.

In short, additive manufacturing lets you get to market faster, plus it helps you ramp up production. To see some success stories of how 3D printing helped companies iterate fast, produce faster, and get to market faster, see the webinar Improve Time To Market for Commercial Vehicles.

Nowlab BigRep Gripper 3d printed

6. Keeping Up With Automation

CHALLENGE

New technological advancements seemingly occur every day, increasing demand and putting pressure on manufacturers to fulfill larger orders. Automation boosts productivity, increases quality, saves costs, and perhaps most importantly, it can collect and analyze data to influence decision-making for continually improved outcomes. The robotic process automation market was valued at $2.3 billion in 2022 and is expected to grow at a CAGR of nearly 40% from 2023 to 2030. This is concerning for small and medium businesses as they compete with large corporations that can afford to use AI to make their production lines more efficient. As automation has taken a foothold, it simply cannot be ignored as the future of manufacturing. 

SOLUTION

A digitized workflow can help your business catch up to the automation super trend, and 3D printing can play a huge part in that. The key is choosing what processes and technologies need updating and how to integrate those within an existing workflow to become more agile and efficient.

Consider digitizing your prototyping process to iterate faster with more data-driven design iterations. Once in full production mode, you might produce 3D printed tooling to streamline your production process. Perhaps you choose to scan components to create perfectly customized 3D printed tools. Maybe you want to embed technology like sensors into those custom tools to provide valuable feedback during production. With an industrial 3D printer, you can expect reliable results with automation across the calibration and printing phases. You might incorporate 3D printing with robotics, milling, or AI so that the strengths of each technology can truly shine as part of an intelligent, automated solution.

Conclusion

3D printing is a transformative solution for manufacturing challenges. It simplifies complex processes, reducing the need for highly skilled workers. It also enhances supply chain resilience through localized, on-demand production, streamlines inventory management by minimizing stock needs, and enables cost-effective mass customization. With 3D printing, scaling your business becomes flexible and efficient, and automation seamlessly integrates into production, boosting productivity while cutting labor costs. Embrace 3D printing for a more agile, efficient, and future-ready manufacturing approach.

Want to learn more about manufacturing challenges overcome by adopting additive?

Watch the on-demand webinar Maximize Efficiency for Localized Production.

Learn how additive manufacturing can make a huge impact to reduce production costs and speed up manufacturing times. Particularly for low-volume and custom parts, highly skilled labor and outsourcing can massively inflate costs and lead times. Learn how large-format 3D printing can streamline processes, simplify logistics, and minimize supply chain risks to deliver the biggest business impact. Don't miss out, register for the webinar:

MAXIMIZE EFFICIENCY FOR LOCALIZED PRODUCTION

INDUSTRIAL QUALITY MEETS  COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

INDUSTRIAL QUALITY MEETS COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

About the author:

Lindsay Lawson <a style="color: #0077b5" href="https://www.linkedin.com/in/lindsay-lawson-152a69185/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Lindsay Lawson

Head of Product Marketing

With an MFA in New Genres, Lindsay's background in sculpture and animation eventually led her to the world of 3D printing. She is primarily focused on applications using large-format 3D printing with additional emphasis on post-processing techniques and design for Additive Manufacturing.

How to 3D Print Channel Letters and Signs

3D Printed Illuminated Sign

Channel letter manufacturers face a rapidly changing industry landscape. Traditional methods are reliable, but 3D printing offers a new level of efficiency and customization. By adopting 3D printing, manufacturers can enhance production speed, reduce costs, and meet diverse client demands.

This article explores the benefits and implementation of 3D printed channel letters.

The Basics of 3D Printing for Channel Letters

What is 3D printing? 

3D printing, or additive manufacturing, is a process that transforms digital designs into physical, three-dimensional objects. By depositing material layer upon layer, 3D printers can recreate intricate designs with precision and accuracy. This technology has found applications in various sectors, from healthcare to automotive, and now, in the realm of business signage. 

Why 3D printing for channel letters? 

The primary allure of 3D printing for channel letters lies in its unparalleled flexibility. Traditional signage methods can often be limiting, especially when it comes to custom designs or rapid modifications. In contrast, 3D printing offers the ability to produce bespoke designs tailored to a business's unique brand identity. This means that businesses can now have signage that is not only functional but also a true reflection of their brand ethos. 

BigRep ONE Large-Format 3D Printer

The Simplicity of the 3D Printing Process

1. Designing Your Channel Letters

The first step in the 3D printing journey is creating a digital design. With the advent of intuitive software tools, even those with minimal design experience can craft a digital model of their desired signage. These tools allow for easy adjustments, ensuring that the final product aligns perfectly with the business's vision. 

2. Choosing the Right Material

Material selection is crucial in determining the durability and aesthetic appeal of the final product. For 3D printed signage, there's a wide array of materials to choose from, ranging from robust plastics to metals. Each material comes with its set of advantages, allowing businesses to select one that best suits their needs and budget. 

3. 3D Printing and Post-Processing

Once the design is finalized and the material selected, the actual printing process begins. Modern 3D printers are efficient, translating digital designs into physical objects with remarkable precision. After printing, some post-processing might be required, such as sanding or painting, to enhance the appearance and longevity of the channel letters. 

Channel Letters - CAD Design

Designing Your Channel Letters

Designing for 3D printing might seem daunting, but with the right approach, it can be a seamless process: 

Software Selection: Start by choosing a 3D modeling software that aligns with your skill level. Beginners might find tools like Tinkercad or SketchUp user-friendly, while those with more experience might opt for software like Blender or Fusion 360. 

Typography Matters: When designing channel letters, ensure you select a font that is legible and aligns with your brand's identity. Remember, thicker fonts tend to be more durable and easier to print. Consider the 3D printer’s capabilities regarding the dimensions of your sign; for example, very thin letters may not be printable. 

Scaling and Dimensions: Ensure your design is to scale. Measure the space where the sign will be placed and adjust your digital model accordingly. This ensures that the final print fits perfectly in its intended location.  

Save in the Right Format: Once your design is complete, save it in a format compatible with your 3D printer, typically .STL or .OBJ. 

Filament Material Samples
BigRep Filament Material Samples

Choosing the Right Material

Selecting the appropriate material is paramount, as it dictates the longevity, appearance, and overall effectiveness of your channel letters: 

PLA (Polylactic Acid): A popular choice for 3D printing, PLA is bio-based, user-friendly, and cost effective. Available in a myriad of colors, it's perfect for indoor signs due to its sensitivity to UV rays and high temperatures. 

ASA (Acrylonitrile Styrene Acrylate): Known for its exceptional UV resistance and durability, ASA is an excellent choice for outdoor signage. It retains color and mechanical properties even when exposed to prolonged sunlight, making it superior to ABS for outdoor applications. While it offers a finish similar to ABS, it's essential to note that ASA requires a heated print bed and might be a bit more challenging to print with than PLA. 

PETG (Polyethylene Terephthalate Glycol): Merging the printability of PLA with the resilience of ASA, PETG stands out as a versatile choice. Its UV resistance and strength make it suitable for both indoor and outdoor channel letters. In addition, PETG has the highest light transmission of the commonly used FFF materials. This can be a benefit when producing channel letters and signage.

Consider Finish and Durability: When deciding on a material, factor in the environment your sign will be placed in. For outdoor signs, UV-resistant and waterproof materials like ASA and PETG are ideal. Also, envision the desired finish—whether glossy, matte, or textured—and select your material to achieve that effect. 

BigRep Fiber-Ready PEX (Power Extruders)
3D Print Post Processing Powder Coating

3D Printing and Post-Processing

Once you've settled on a design and chosen your material, it's time to bring your channel letters to life. 

Printer Calibration: Before starting, ensure your 3D printer is calibrated. This means checking that the print bed is level, the nozzle is clean, and the temperature settings align with your chosen material. For instance, ASA usually requires a higher extruder temperature than PLA. 

Support Structures: Depending on the complexity of your design, you might need to add support structures. These temporary structures help in printing overhangs or intricate details and can be removed post-printing. The support structures can be created during slicing when you make your 3D printing file, called gcode. Slicing software like BigRep BLADE can automatically create the needed support structures from default settings. 

Layer Resolution: Decide on the layer height for your print. A smaller layer height will give a smoother finish but will take longer to print. Conversely, a larger layer height is quicker but might require more post-processing to achieve a smooth appearance. 

Post-Processing: After printing, some cleanup and finishing touches might be necessary. This can include: 

  • Support removal: To remove the support structures, by either breaking them off manually or dissolving them if you use water-soluble support material, like BigRep BVOH. 
  • Sanding: To smooth out layer lines or imperfections. 
  • Painting or Sealing: Especially if you want a specific color or need additional protection against the elements. 
  • Assembly: If your sign consists of multiple parts, you'll need to assemble them, which can be done using strong adhesives or other joining methods. 
Break Off Support Structures
Support structures are designed to break away easily after 3D printing.

Cost Implications for 3D Printing Channel Letters

Initial Investment

While there's an upfront cost associated with purchasing a 3D printer, materials, and software, the long-term benefits often outweigh these initial expenses. When compared to the recurring costs of traditional signage methods, especially for custom designs, 3D printing can offer substantial savings. 

Long-Term Savings

The ability to print in-house eliminates the need for outsourcing, reducing lead times and costs. Moreover, the flexibility of 3D printing means that design alterations can be made swiftly without incurring significant expenses. This adaptability is especially beneficial for businesses that require seasonal or promotional signage changes. Aside from creating 3D printed channel letters, a 3D printer can be used to make virtually anything, so if you have one in house, you will surely find many additional applications that are made simpler and less expensive with 3D printing. 

Real-Life 3D Printing Success Stories

ProLicht Makes Complex and Custom 3D Printed Signs

ProLicht develops and produces solutions for illuminated advertising and complex advertising installations for brands and corporate designs worldwide. They rely on modern technological, including their BigRep ONE, to be able to create highly individualized products with superior quality.

The BigRep ONE is integrated into ProLicht's streamlined workflow with 95% in-house production. This guarantees quality management so that control of implementation is almost exclusively in their our hands.

ProLicht boasts a complete portfolio that meets all requirements for inside and outside CI/CD of global brands.

Through quality and sustainability in the development, production, and installation of their signware solutions, ProLicht can create long-lasting value.

BigRep Headquarters Illuminated Channel Letters

The BigRep creative team shows how they 3D printed a large-scale customized sign with the size, font, and color of their choice. The sign was designed to be printed on a BigRep ONE without any support filament, which made the print very fast and inexpensive. With dual extrusion, two different filaments (one colored and one transparent) are integrated into a single print to blend the branded colors with light diffused through the transparent material.

Tips and Tricks for 3D Printing Channel Letters

Maximizing the Lifespan of Your 3D Printed Channel Letters

Regular maintenance can extend the life of your sign. This includes periodic cleaning to remove dust and debris and checking for any signs of wear or damage. If your sign is outdoors, consider applying a UV-resistant sealant to further protect against the elements. 

Creative Ideas

3D printing offers a realm of possibilities. Think beyond just letters. Incorporate logos, symbols, or even interactive elements into your signage. With 3D printing, you're only limited by your imagination. 

Maintenance and Care

Ensure your sign is securely mounted to prevent any damage from strong winds or other external factors. Regularly inspect for any signs of wear or damage and address any issues promptly to maintain the sign's integrity and appearance. 

3D Printed Channel Letters
3D Printed Sign by ProLicht

The world of business signage has been transformed by the capabilities of 3D printing. For manufacturers, this technology offers an avenue to create distinctive, durable, and cost-effective signage that truly resonates with their brand's identity. As the world of 3D printing continues to evolve, it's a well-timed moment for businesses to embrace this innovation and stand out in a competitive market. 

Embracing innovation is the hallmark of a forward-thinking business. If you've been inspired by the potential of 3D printed channel letters, now is the time to take the leap. Whether you're just starting out or looking to revamp your existing signage, 3D printing offers a world of possibilities. 

Have you already ventured into the realm of 3D printed signage? Or perhaps you're teetering on the edge of making the decision?  

Get in touch! Let's redefine the future of business signage! 

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

About the author:

Dominik Stürzer <a style="color: #0077b5" href="https://www.linkedin.com/in/dominik-stuerzer/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Dominik Stürzer

Head of Growth Marketing

Dominik is a mechanical engineer whose passion to share knowledge turned him to content creation. His first 3D prints started in university. Back then the 3D printers were big on the outside and small on the inside. With BigRep the machines are finally big in their possibilities.

How to Choose Which Features You Need on the Modular BigRep ONE 3D Printer

BigRep ONE Large-Format 3D Printer

How to Choose Which Features You Need on a Modular BigRep ONE

BigRep ONE Large-Format 3D Printer

The BigRep ONE is a modular large-format FFF 3D printer designed to produce high-quality, long-lasting parts while saving you time and money. With a massive build volume of one cubic meter and versatile modular feature configurations, it’s perfect for a wide range of applications, including prototypes, furniture design, creative exhibitions, automotive components, tooling, and more.

The latest version, the BigRep ONE.4 can be configured with various modes and add-ons. Customize the specific large-format 3D printer for your current needs, while you also have the possibility to upgrade as those needs change in the future. It’s important to understand the BigRep ONE’s standard features and capabilities as a modular 3D printer, so you can adjust the ONE to meet your specific Additive Manufacturing needs.

Which Features Does the BigRep ONE.4 Already Have?

The newest iteration of the BigRep ONE has an array of fantastic features that give you full control over your prints.

Massive Print Volume

The ONE.4’s massive one cubic meter build volume firmly establishes it as one of the biggest 3D printers in FFF manufacturing, giving you the ability to unleash your potential in a way that smaller printers simply cannot achieve.

Enclosed Safe Frame

The ONE.4 has a plexiglass enclosure, perfect for monitoring print progress as well as showing your work to any potential visitors. It also provides CE-compliant operator protection: if you open the enclosure mid-print, the machine will stop running. The enclosure reduces temperature fluctuation within the build volume, which is important for maintaining quality and consistency, especially during longer prints.

PEX Fiber-Ready Extruder

Featuring 0.6mm, 1.0mm, or 2.0mm nozzles, the fiber-ready Power Extruders (PEX) provide versatile solutions from maximum detail to high-flow 3D printing. While producing amazing results with BigRep materials including biopolymers, water-soluble support, engineering-grade materials, and fiber–reinforced filaments, the fiber-ready Power Extruder is open for printing with 3rd party materials.

BigRep Fiber-Ready PEX (Power Extruders)

Semi-Automated Print Bed

The 1M2 print bed is covered with polyimide foil to ensure that your print stays fixed to the print bed, with additional adhesion possible with glue such as Magigoo. The ONE.4 features semi-automatic print bed calibration to ensure proper extrusion and adhesion of the first layers of your print. For fully automatic calibration and even more control, however, it’s worth checking out the BigRep PRO.

Out-of-Filament Sensor

The BigRep ONE’s out-of-filament sensor pauses all prints when you are out of filament, essential for large prints that may use up multiple spools. Simply replace the filament and continue your print.

Intuitive User Interface

For full optimization and calibration of your print, the BigRep ONE is equipped with an intuitive user interface. It helps you remotely load gcodes onto the system, or manually with a USB stick, calibrate the print bed, stop and start operations, and monitor systems in conjunction with BigRep CONNECT.

BigRep ONE.4 Intuitive User Interface

Filament Enclosure

The filament enclosure has been designed to fit all standard spool sizes, including two spools up to 8kgs. This allows for longer, more continuous printing time.

Standard Camera

For extra-large prints that can take days or even weeks, it’s important to be able to monitor your prints remotely from your computer, tablet, or mobile device. The ONE.4 comes with a webcam attached to your printer, allowing for worry-free prints. The camera also allows you to make time-lapse videos, which can be useful for boosting your marketing outreach.

Which Configuration Works for Me?

The ONE.4 is customizable to meet your specific needs, which begins with the extruder combination you choose.

single

SINGLE MODE

Single Mode is the most affordable option, a basic configuration with a single Power Extruder and a 1mm nozzle. This option is great for prototyping and testing large-scale prints on a lower budget, however, water-soluble support isn't possible in Single Mode.

BigRep ONE.4 Single Mode
BigRep ONE.4 Dual Mode
dual

DUAL MODE

Our most popular configuration is Dual Mode, which allows for dual extrusion. This is perfect for producing complex geometries when you need water-soluble support for easy removal after printing. Some customers prefer to keep different nozzle sizes on either PEX to avoid swapping out nozzles for different prints. Another advantage of dual extruders is having two different primary materials readily loaded for fast switching between filaments.

twin

TWIN MODE

Twin mode is perfect when you want multiple prints of the same geometry, speeding up your output by 100% and doubling your production. As both extruders work simultaneously, you can print two versions at once, cutting costs and reducing time-to-part by 50%. With Twin Mode, each extruder can print within one-half of the build volume, so Dual or Single Mode is required for larger prints needing build volumes over 0.5m2.

BigRep ONE.4 Twin Mode

Which Additional Add-Ons Are Available?

The BigRep ONE is a modular printer, so you can choose features to optimize your 3D printer based on your specific needs. Here are the useful add-ons that you may want to consider:

Keep-Dry Add-On

If you want to improve quality and make the highest-quality prints possible, then it’s important to keep your materials dry, particularly engineering-grade and hygroscopic filaments. The keep-dry box protects filaments from environmental moisture and dust, which is especially important for materials such as TPU, BVOH, and HI-TEMP.

BigRep ONE.4 Keep-Dry Box

Connected Camera

For additional peace of mind, the ONE.4 can be equipped with a USB camera and integrated into BigRep CONNECT, a new monitoring and analytics software that lets you keep track of prints, job queues, material usage, and more... plus, BigRep CONNECT is free.

Dual Mode Add-On

If you already have Single Mode, you can upgrade to as your needs change to print with two extruders instead of one. This is also necessary to install first if you want to print in twin mode.

Twin Mode Add-On

If you have Dual Mode already enabled, the twin kit add-on allows you to upgrade to twin mode as well.

Custom Color

The BigRep ONE is easily identifiable with its trademark orange corners, but you can rebrand your ONE.4 with the custom color add-on to match your company's color scheme or corporate identity.

BigRep ONE.4 Custom Color

Three Different Personalities of the BigRep ONE

In the race for 3D printing success, knowledge is half the battle. Understanding the full capabilities of the ONE should give you an indication of which features you need to get the most out of your 3D printer. It’s always worth considering exactly what your aims are before tailoring the ONE to meet those desires. To give you an indication, we have three potential combinations you could work with:

The Sprinter

As the name suggests, the Sprinter is all about speed and is great for ramping up output of batch production. Once design and calibration, material usage, and bed-leveling are set, the Sprinter works quickly and efficiently to simultaneously produce two identical parts. A Sprinter setup could include the Twin Mode extruder configuration with a 1.0mm nozzle, doubling production capabilities, and a CONNECT camera to monitor 3D prints over long periods.

The Essentials

When you want a large-format 3D printer at a smaller price, you may want only the Essentials. Opt for a no-thrills, all-business Single Mode ONE.4 configuration perfect for rapid testing and production. The Essentials includes a single fiber-ready Power Extruder with a 1.0mm nozzle. Perfect for beginners, it's a robust solution at minimal cost.

The Perfectionist

The Perfectionist is a ONE.4 configuration suited for applications requiring the best quality using materials that deliver. For complex geometries, Dual Mode is recommended to enable the ONE.4 to print water-soluble support, like BigRep BVOH, together with a range of compatible materials. To keep sensitive materials in optimal condition, add on the Keep-Dry Box to protect filaments from environmental moisture and dust. For maximum detail, this Perfectionist approach utilizes a 0.6mm nozzle for finer-quality prints and lower layer heights.

Don’t Limit Yourself

In the 3D printing world, there are no limitations to what you are capable of. With the BigRep ONE, you are given the opportunity to create a 3D printer completely in line with what you want to achieve.

As your 3D printing needs evolve, simply upgrade your ONE with additional features to grow along with you. If you need a custom solution for your needs, please feel free to contact our team today.

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

LARGE-SCALE INNOVATION. LIMITLESS CREATIVITY.

The BigRep ONE is an award-winning, large-format 3D printer at an accessible price point. With over 500 systems installed worldwide, it's a trusted tool of designers, innovators, and manufacturers alike. With a massive one-cubic-meter build volume, the fast and reliable ONE brings your designs to life in full scale.

Explore the ONE

About the author:

Lindsay Lawson <a style="color: #0077b5" href="https://www.linkedin.com/in/lindsay-lawson-152a69185/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Lindsay Lawson

Head of Product Marketing

With an MFA in New Genres, Lindsay's background in sculpture and animation eventually led her to the world of 3D printing. She is primarily focused on applications using large-format 3D printing with additional emphasis on post-processing techniques and design for Additive Manufacturing.

Design for Additive Manufacturing: Best Practices for Superior 3D Prints

Design for Additive Manufacturing (DfAM)

Design for Additive Manufacturing:
Best Practices for Superior 3D Prints

Design for Additive Manufacturing (DfAM)

The possibilities for designing custom, innovative solutions using 3D printing are endless. While this is undoubtedly true for 3D printing hobbyists who want to create and optimize DIY projects, the advantages to Additive Manufacturing (AM) grow exponentially at an industrial scale, especially when you own a large-format BigRep printer.

Aside from freedom of design, 3D printers offer the added benefits of low-cost customization, agile iteration, faster time-to-market, reduced material waste, and a way to avoid complicated logistics and supply chains. However, not all designs are suited for Additive Manufacturing. Having the right knowledge is crucial to get the most out of your printer, especially regarding the earliest design and conceptualization stages.  This is where Design for Additive Manufacturing (DfAM) can make or break the success of your project.

What is Design for Additive Manufacturing?

Additive Manufacturing (AM) is the process of creating an object by building it up one layer at a time. It is the opposite of subtractive manufacturing, where an object is produced by cutting away at a solid block of material until the final product is complete, such as CNC machining. While the terms are often used interchangeably, the most common form of Additive Manufacturing is 3D printing. DfAM is a method of designing parts specifically for Additive Manufacturing, which have unique requirements different from other common manufacturing processes such as injection molding or casting. The critical difference between DfAM and traditional design is that DfAM principles guide designers to take full advantage of the unique capabilities of 3D printing while avoiding some of its limitations with smart solutions.

This guide will explain some factors that make a design well-suited for 3D printing, plus it will introduce DfAM principles so you can maximize your 3D printing results.

3D Print Speed

Why DfAM Matters

Understanding DfAM is essential to ensure successful, repeatable, and scalable results that maximize 3D printing capabilities. What will you get from following DfAM guidelines?

  • Reduced material and part costs: By implementing DfAM principles, unnecessary supports are avoided, reducing materials and lowering the cost to print. By using generative design software and AI, parts can be designed to minimize material usage while easily still meeting all of the necessary part requirements.
  • Faster print times: Large-scale 3D prints may run for days or even weeks! However, when components are optimized for Additive Manufacturing, you can implement the most effective printing plan, ensuring the shortest print time that is possible.
  • Increased scalability: By designing with DfAM principles, designs can be printed on various printers and scaled up or down without requiring significant adjustment. 3D printers can also produce sequential batches of prints or, in some cases, parallel prints that drastically speed up the time required to produce each part.
  • Improved part strength: With Design for Additive Manufacturing principles, you can increase the strength of your 3D print, plus you can alter factors like part weight, flexibility, and more. CAD software with generative design functions uses algorithms to produce geometries that meet strength and performance requirements.
new_f1_frontwing (1)

DfAM Best Practices

Design for Additive Manufacturing principles result in many overall benefits, but some specific design choices will be influenced by the type of 3D printing technology used. However, DfAM best practices will help you reduce material use and printing time, consolidate parts, and optimize topology and performance, no matter what 3D printing technology is implemented.

1. DfAM Depends on Your Specific 3D Printer

Before you start designing for 3D printing, you must understand the different types of processes available. The most popular 3D printing processes include FFF (also commonly referred to as the trademarked term, FDM), SLA, and SLS.

  • FFF (fused filament fabrication) 3D printing consists of layers of melted plastic deposited onto a build platform. The plastic, in the form of a spooled filament, is fed through a heated nozzle that softens the material and extrudes it in a thin stream. The printer then lays down the melted plastic according to the design specifications of the printed model. Once each layer is complete, in the case of large-format FFF 3D printers, the extruder moves up in the Z axis exactly one layer height and another layer is deposited on top. In the case of some smaller desktop printers, the build platform lowers by the amount of one layer height to print the next layer. This process continues until the model is complete. Desktop FFF 3D printers are relatively simple and inexpensive, making them one of the most popular types of 3D printers among hobbyists and home users. However, large-format and specialized FFF machines can produce high-quality results, making them a viable option for professional and industrial applications. Any FFF 3D printer will require support structures for parts with overhang angles and bridging distances beyond limits. Depending on the model of FFF 3D printer, minimum wall thickness, layer heights, and other settings will vary. FFF 3D printers can print with a variety of materials, but virtually all filaments are some type of polymer which may also include fiber, metal, wood, or other additives. Some FFF printers can use water-soluble materials for printing support structures, which can then be dissolved in water for easy removal.
  • SLA (stereolithography) uses ultraviolet (UV) light to cure and solidify photosensitive resin layers one at a time. As each layer is printed, the vat of resin also containing the print in progress lowers by one layer thickness. SLA prints may require some support structures, which are slightly different from FFF supports and are not available in water-soluble materials. SLA prints typically require cleaning after printing to remove any residual uncured resin otherwise, the print would be sticky and harmful to human skin.
  • SLS (selective laser sintering) uses a laser to fuse powder materials, layer by layer, to create a 3D object. After each layer is printed, the powder bed is lowered by one layer thickness so another layer can be sintered on top. SLS prints do not require support structures because the print is surrounded by unsintered powder during the printing process. Finished SLS prints typically require cleaning, sometimes with specialized machines, to remove loose powder from the 3D printed part.
Env_2

2. Reduce Material Usage and Printing Time

When designing a 3D model for Additive Manufacturing, it is crucial to consider the amount of material required and the time it will take to produce the finished product. Reducing material usage can reduce overall production costs and speed up the manufacturing process. You can minimize material by:

  • Reducing the surface details in the model: Most 3D printing software has specific tools for reducing the surface details in the 3D model.
  • Tweak the slicer settings: You can reduce the infill percentage, the number of walls, and more.
  • Reorient the part: Reduce printing time, material usage, and support requirements with optimized part orientation.

3. Part Consolidation

One benefit to 3D printing is that parts that would traditionally need to be produced separately and later assembled may be 3D printed as a single, consolidated part. By doing this you can reduce printing time, increase production speed, reduce assembly time, and enhance part strength. As an added bonus, part consolidation may only be possible with 3D-printed parts, and by utilizing DfAM guidelines you may be maximizing the benefits of Additive Manufacturing. Part consolidation benefits include:

  • Reducing the overall number of parts that need to be manufactured as multiple parts are combined together
  • Reducing the amount of time needed to manufacture each individual part
  • Reducing the amount of waste material generated during the manufacturing process
  • Improving the mechanical properties of the final part by reducing internal stresses
PA12CF_SamplePart

4. Topology Optimization

Topology optimization principles aim to use the minimum amount of material that can meet given performance requirements while minimizing the weight of the component. First, you must specify the mechanical performance requirements (such as stiffness or strength) and design constraints (such as maximum allowable stress or displacement). Some CAD software can simulate how your part will respond under different loads. Based on the results of the analysis, you can then automatically adjust various design parameters until an optimal solution is found.

Topology optimization can improve a component's strength, stiffness, or weight as well as reduce manufacturing costs. It is often used with finite element analysis (FEA) to assess the effects of design changes on the component's performance. The results can then be used to create a new design that is more efficient and effective.

B9316726

Design for Additive Manufacturing Guidelines

Like any other manufacturing process, there are best practices to produce quality 3D-printed parts.

1.    Minimal Feature Size

Minimal feature size refers to an object’s minimum width or height that a 3D printer can accurately print. Sharp corners, holes, protruding text, and cutouts are the types of features where a minimum size can be critical for success. No matter on which axis the feature is oriented, it is usually constrained by the 3D printing technology used, as well as the specific hardware (e.g. nozzle size) or machine accuracy.

If your 3D-printed part requires holes, the minimum diameter will be dependent on different factors depending on the 3D printing technology. With SLS, for example, the holes must typically have a diameter over 1.5 mm to prevent powder from getting stuck in the holes. With FFF 3D printing, the minimum hole diameter is mainly dependent on nozzle size and layer height.

One DfAM recommendation is that all sharp corners should be chamfered or filleted to reduce stress. Applying chamfer and rounding the sharp edges ensures that shrinking forces concentrating on one specific point in the design are dispersed.

HHJ09606

2. Wall Thickness and Layer Height

Wall thickness refers to the thickness of the printed object's walls, which are made of perimeters that are sometimes called the wall line count. The absolute minimum wall thickness is a single extruded line (a wall line count of 1) that is dependent on nozzle size: it must not be smaller than the nozzle diameter and usually slightly larger than the nozzle diameter, typically by a factor of 1.2. Additional wall lines such as inner walls, as well as infill, may be printed thinner than the nozzle diameter but is typically a minimum of 60% of the nozzle diameter.

A secondary factor determining minimum wall thickness is the overall geometry and intended use of the 3D print. If it is a functional object subject to stress or force, it is important to use thicker walls with a higher wall line count. If the object is a prototype for design iterations or fit checks, then thinner walls with fewer lines may suffice. The thicker the walls, the longer it will take to print the object and the overall part weight will increase.

Layer height, which is the thickness of each layer measured in the Z axis, will also factor into your DfAM choices. Although layer height settings are determined during the slicing, your design can be informed by which settings you plan to use. For example, a minimum feature size is dependent on layer height, so you should avoid designing features that your 3D printer cannot produce.

Layer height is dependent on the nozzle diameter: the height must be less than the nozzle diameter, typically a factor ranging from 0.3 to 0.6. The higher the layer height, the faster the print and the rougher the appearance of the layer structure on the surface. Part strength is somewhat impacted by interlayer bonding and the strength is slightly increased with higher layer heights. Typically, lower layer heights are used for finer, more precise prints with smoother surfaces, while higher layer heights are beneficial for faster printing when surface smoothness is not important or can be managed with post-processing.

Desgign for Additive Manufacturing: Layer Height

3. Support Structures

While not technically part of the design process, support structures may be avoided by following DfAM principles, thereby reducing printing time and material usage, and improving surface quality.

Suppoort Structures - DfAM

Support structures are temporary structures that help to reinforce 3D objects, prevent them from collapsing during the printing process, and improve their overall strength and durability. 3D models with overhangs or elements with a small contact area with the build plate require support structures during 3D printing. Parts with delicate features or low-density areas may need support structures to prevent them from being damaged during 3D printing. However, each 3D printer and material has its own threshold for requiring supports; a rule of thumb is that parts with a vertical angle of 50 degrees or less don't require it. 

Support structures are designed to be removed after the printing process. Breakable supports can be printed with the same material as the print and are manually removed when the print is completed. Another solution are supports, printed in a water-soluble material, that can be dissolved after printing. These are usually easier to remove and result in better surface quality. By following DfAM guidelines for overhangs and bridging (as noted below), you can reduce or entirely avoid the need to print support structures.

4. Overhangs

An overhang is any geometrical shape extending beyond the previous layer without any support structure. If an overhang is too steep, typically over 50°, it will sag or collapse without using a support structure.

When designing for Additive Manufacturing, you can adjust these angles to keep within maximum overhang angles, thereby avoiding overhangs that require support. The benefit of this is threefold: the printed surface will look better, the print will be faster, and it will require less material usage. With the BigRep BLADE slicer, the support structures can be created automatically based on material and machine-specific profiles. To experiment with higher maximum overhang angles, you can change this setting and reduce the automatically generated supports. The choice of material will also affect the maximum overhang angle achievable without support. If your project allows, you can choose a material that tolerates higher overhang angles to avoid printed supports.

Overhangs - DfAM

5. Bridging

Bridging occurs when material is printed in mid-air spanning two or more otherwise disconnected segments without a printed layer below. To successfully bridge, the material must be able to keep its weight as well as the weight of the model itself. The maximum length of a bridge will depend on the material and the 3D printer. Beyond that limit, the bridge will sag unless support structures are printed below. By choosing a material with better bridging properties, you may be able to avoid printed supports without altering your design.

As seen in the image below, the quality of a bridge degrades the longer it is. In other words, past a certain (material, machine, and geometry dependent) threshold, the bridge will sag. The image below shows a test print demonstrating various bridge lengths printed with a BigRep ONE using PLA filament. Here we see that the bridge quality begins to suffer when longer than 50mm. Keep in mind that this test print is a simplification of a real-world 3D printing application, so your 3D print will likely require shorter bridges or support structures when compared to this test print.

Bridging - Design for Additive Manufacturing
Bridging front view - Design for Additive Manufacturing

6. Orientation

Part orientation is a setting determined during slicing, but your part design can be influenced and improved with this setting in mind during the design stage. By changing the orientation of the part within the printer's build volume, you can increase part strength, reduce printing time, improve surface quality, and avoid 3D-printed support structures. For stronger parts, the print should be oriented so that the printed layers are perpendicular to the direction of the force that will be applied to the part. This is because the inter-layer bond, where each layer touches the next, is the weakest part of the print. By orienting the layers perpendicular to the forces the printed part must withstand, it will be more resistant to breaking.

Part orientation can affect the overall print time by reducing travel moves (when the print head moves the extruder to a new location without printing) and by reducing the need for printed supports.

The surface quality is negatively affected by part orientation in two ways: support structures and the staircase effect. Support structures can impact the surface quality of a 3D print which may appear rougher, more irregular, and may be damaged during the process of support removal. The staircase effect occurs when the ridges created by the printed layers are more pronounced on a 3D print, as seen on the image to the right. This can be reduced in a few ways to make the print surface appear smoother. First, the layer height can be reduced, but this will increase printing time. Secondly, the part can be oriented so that the layers are built up perpendicular to the surface of the 3D print. If it is important that a particular surface is smoother, the print should be oriented so that surface is as vertical (in relation to the print bed) as possible.

Part Orientation - DfAM

7. Tolerances

In Additive Manufacturing, tolerance measures how much deviation is acceptable or expected from the original 3D model. It is, in other words, how closely the 3D print measures up to the digital model. It is essential to consider tolerance when designing parts for 3D printing, as the build process can introduce inaccuracies.

Support structures can affect tolerance if they leave an overly rough or distorted print surface after the supports have been removed. Understanding tolerances is essential because they determine how well a part will fit and function as intended. For example, a loose tolerance may cause the 3D-printed part to be loose and wobble if fitted within another structure while a tight tolerance may cause a part to be difficult to assemble or create excessive wear.

The achievable tolerances of a 3D print are dependent on the accuracy of the 3D printer itself, its components, and the material used. Accurate tolerances can be negatively impacted by the 3D printer when it is not properly calibrated or vibrates too much during printing. Tolerances are also determined by nozzle diameter and layer height. A 0.6 mm nozzle will be able to achieve smaller tolerances than a 2 mm nozzle. Higher layer heights will give a rougher surface resolution, which also affects the achievable tolerance of the 3D-printed part.

Tolerances in Additive Manufacturing

8. Infill

Infill is a 3D-printed interior structure, typically a lattice pattern, that fills the interior cavity of a 3D print. The type and density of infill are determined in the slicing, but it can be useful to know what infill is needed when initially designing your part.

Infill serves two functions: it increases the strength of the part and is necessary to support the top layers of certain geometries. The infill can be a variety of patterns like a grid, triangle, or gyroid, and its density is determined by the slicing settings ranging from 0-100% of empty versus solid space. With 0% infill, the part will be lighter and print faster, but the part will be weaker. It is virtually never necessary to print with 100% infill, as the increased part-strengthening effect of infill is typically negligible above a certain percentage. The second function of infill, to support top layers, is only a factor depending on the part geometry. If the top area is smaller than the distance that can be achieved by bridging, then no infill may be required unless part strength is a factor. In practice, most 3D prints require infill to support the top layers and the infill density required for adequate top layers depends on the number of top layers, the machine's capabilities, and the material used. If a 3D print only has one top layer, the space between the printed infill walls may sag, but with additional layers, the final top layer may compensate and appear as intended.

The correct settings depend on your project requirements. For example, if you are 3D printing an object that does not need to be strong, you can use a lower infill setting to save time. When designing for Additive Manufacturing, the infill should be as strong as possible while using the least amount of material. This helps to reduce the weight of the object and the overall cost of printing.

If your design constraints allow, you can change the geometry of your part to minimize the need for infill or avoid it altogether. This can result in a faster 3D print, better surface quality, and reduced material usage.

Infill Patterns & Density

Testing and Validating Your Design

After following DAM principles, the success of your design can be evaluated before or after printing.

DfAM Software

Design for Manufacturing software, like DFM Pro, verifies if design rules for Additive Manufacturing are followed. The software takes the 3D part, identifies possible manufacturing issues, and suggests fixes. Automatic fixes can be applied.

FEA Software

FEA (Finite Element Analysis) software can be used to analyze the mechanical properties of your design before printing. You can alter your design using DfAM guidelines, AI, and/or dedicated software to improve the parameters within your digital 3D model.

Test Printing

Assuming that your 3D printer is calibrated and functioning properly, you can 3D print your part to evaluate the success of your design and iterate as needed. The ability to easily print tests, evaluate, redesign, and reprint is one of the great benefits of Additive Manufacturing.

Break Off Support Structures

Limitations of Design for Additive Manufacturing

Although designing for Additive Manufacturing has many benefits, it still has some limitations to what a specific 3D printer, material, or 3D-printing application can achieve. While DfAM guidelines can result in better 3D prints, they can not overcome inherent design flaws that may affect the overall functionality of a part.

One limitation of DfAM is human error. On one hand, expertise can greatly benefit the quality and outcome, but without the use of algorithms or AI, there is a limit to what experience can achieve, particularly in novel situations. The need to iterate designs and reprint can increase costs and delay timelines. When the time for design iteration is limited, analysis software (like DFM or FEA) and hardware (3D scanner) can reduce the likelihood of mistakes, however, these may require additional tools and software competence.

Some critics of DfAM suggest that stringent design rules result in less original or innovative designs, becoming more homogeneous in style. Others counter that the use of Additive Manufacturing opens up a world of design possibilities not achievable with other production methods.

Design for Additive Manufacturing

Conclusion

The DfAM approach is a powerful set of design tools that can improve the end result of additive manufactured products and parts. DfAM is essential for efficiency and consistency when designing models for 3D printing and is particularly essential for industrial 3D printing, improving the performance of products by making them lighter and more robust.

In many cases, DfAM can also benefit aesthetic choices to result in beautiful, quality 3D prints. DfAM is an evolving set of rules and best practices, which can be modified for specific design tasks and as 3D printing technology evolves.

Want to know more? Watch this webinar to learn about industrial design for Additive Manufacturing.

INDUSTRIAL QUALITY MEETS  COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

INDUSTRIAL QUALITY MEETS COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

About the author:

Dominik Stürzer <a style="color: #0077b5" href="https://www.linkedin.com/in/dominik-stuerzer/" target="_blank" rel="noopener"><i class="fab fa-linkedin"></i></a>

Dominik Stürzer

Head of Growth Marketing

Dominik is a mechanical engineer whose passion to share knowledge turned him to content creation. His first 3D prints started in university. Back then the 3D printers were big on the outside and small on the inside. With BigRep the machines are finally big in their possibilities.

Carbon Fiber 3D Printing: Everything You Need To Know

Carbon Fiber 3D Printing

Carbon Fiber 3D Printing: How to 3D Print Strong Parts

Adding carbon fiber (CF) to filaments improves both strength and stiffness. The added strength and increased stiffness provided by the addition of CF leads to a better strength-to-weight ratio, achieving lighter, stronger parts with less printing time.

Read on below to see how carbon fiber can benefit your manufacturing business and learn about the unique properties of CF filaments.

What are Carbon Fiber Filaments?

Carbon fiber-reinforced plastics (CFRP) bring together the qualities and performance properties of carbon fiber with the polymer material they are reinforcing. Printability and ease of use of a standard thermoplastic like PLA, ABS, or PET gains superior performance properties by including carbon fiber content.

Chopped fibers are mostly used for industrial production and also 3D printing. These carbon fibers come as a "filler" material in thermoplastic materials for injection molding or as carbon fiber filaments to use in 3D printers. They can be processed like any other thermoplastic material. But they have extra requirements which will be explained later on.

FFF (extrusion-based) 3D printing uses chopped carbon fibers. These small fibers are then mixed into a standard thermoplastic as a reinforcing material.

Why do you need Carbon Fiber 3D Printing?

Industrial environments often demand specific mechanical properties and finely tuned precision. Fortunately, by bringing together the capabilities of a high-strength material and the many advantages of additive manufacturing, carbon fiber 3D printing offers exceptional dimensional stability in strong, stiff parts with a fine surface finish and a high heat deflection temperature - ideal for functional, high-performance applications.

With 3D printing moving ever deeper into end-use production, the ability to manufacture both parts and tooling using carbon fiber filaments is increasing in demand.

Whether using these materials in molds, jigs, fixtures, tooling or high-performance race cars, specialty aerospace equipment, or professional cycling equipment, carbon fiber 3D printer filament enables you to create the high-strength parts you need. Of course, as a relatively new offering in the manufacturing industry, carbon fiber 3D printing may have many pros, but it's also worth being aware of the printing requirements before you get started.

Carbon Fiber Filament
CF Filaments
This pattern was printed in BigRep Hi-Temp CF and is used to create drones parts made of carbon fiber prepreg.

Pros of Carbon Fiber 3D Printing

The advantages of carbon fiber 3D printing come down to their performance properties:

High Strength

Perhaps the most-touted property of carbon fiber 3D printer filament, high strength is key to its performance — and desirability as a 3D printing material. Carbon fiber offers a strength-to-weight ratio that enables high performance with low density.

Dimensional Stability

By lessening the tendency for part shrinkage, carbon fiber's high strength and stiffness contribute to its excellent dimensional stability upon usage, essential for parts that require precise dimensions and tight tolerances.

Light Weight

Hand-in-hand with its strength is the light weight of a carbon fiber 3D printer filament.  Light weights are a key advantage of 3D printing in general, and using carbon fiber materials enables that weight reduction without a loss of performance-grade strength.

High Heat Deflection Temperature

Compared to standard 3D printing materials like PLA, ABS, and PETG, carbon fiber filaments can withstand significantly higher temperatures. Carbon fiber composite materials — such as BigRep's PA12 CF — enhance the heat deflection temperature of the base material for better performance at elevated temperatures.

LESS POST-PROCESSING REQUIRED

CF filaments make layer lines less noticeable. This gives you better surface quality and haptics, reducing the need for any post-processing operations such as sanding.

Stiffness

3D-printed carbon fiber parts maintain their shape under high stress. In contrast with other materials that trade off strength and durability for stiffness, the rigidity possible with carbon fiber ensures structural integrity.

Requirements to Work with Carbon Fiber Filaments

Carbon fiber filament is more abrasive than many other materials and has specific heat requirements. As is typically the case with engineering-grade materials, they cannot simply be swapped out for standard 3D printer filament and be expected to print with the same settings.

print bed

Heated Print Bed

Hand-in-hand with an enclosed 3D printing environment is a heated print bed, which is crucial to ensure that the first print layer adheres to the print bed. Without this strong foundation, the success of the remaining print layers may be compromised.

nozzle pro

Hardened Nozzle

Over time — which can vary from one to a few print jobs — carbon fiber filament will wear down a standard 3D printing nozzle due to its abrasiveness. A brass nozzle, for example, will wear out when extruding these materials and will ultimately be rendered functionally useless. Hardened steel is a requirement for a 3D printer to handle CF filament.

Of course, designers, engineers, and operators working with any CF-inclusive project must all be well-trained in the requirements for working with carbon fiber filaments. Training and upskilling must be considered when considering bringing CF filaments into operations.

large-3d-printer-car-interior

Print Orientation

The addition of CF increases tensile strength but when managed incorrectly it can lead to a reduction in layer adhesion. To compensate for the material's low ductility, orient the part in the direction of the stress or the load.  This can be adjusted during the orientation of the part in a slicing software such as BLADE.

Composite Mould 3D Printed with Carbon Fiber Filament

Where are CF Filaments used?

Carbon Fiber 3D printing is best put to use in manufacturing environments thanks to its high strength-to-weight ratio and overall stiffness. Among the primary uses for these materials are the creation of molds, jigs and fixtures, and tooling.

Composite Molds & Thermoforming Molds

3D printed molds are one of the most cohesive ways advanced and traditional manufacturing technologies work together in an industrial environment. 3D printed molds offer the complexities and speed of production of 3D printing to the mass production capabilities of mold-based manufacturing. When it comes to composite molds and thermoforming molds, the performance properties of CF materials are a natural fit.

Composite molds are one of the most common manufacturing methods to cost-effectively produce large batches of identical parts. As their name implies, composite molds are made using composite materials, which can be made in complex shapes and stand up to repeated use — all at a significantly lower cost than aluminum or steel molds.

Thermoforming molds use heat and pressure to shape a flat thermoplastic sheet into a form using conduction, convection, or radiant heating to warm the sheet before conforming it to the mold’s surface. Thermoforming molds must stand up to repeated high-heat usage, requiring specific performance capabilities that can be well delivered via CF materials.

Jigs & Fixtures, Tooling

Often viewed as supplemental to manufacturing processes — but vital in their own right — are jigs, fixtures, and tooling, using in milling, drilling, and other subtractive operations. Jigs and fixtures are used to hold specific parts in place throughout different stages of their manufacturing, and tooling is used throughout.

These all-important tools often perform best when customized to the application at hand and may be worn out through highly repetitive use. For these reasons, jigs, fixtures, and tooling are increasingly 3D printed on-site. They can be custom-fit to their specific need and reproduced on demand without outsourcing or waiting to be restocked.

When made of reinforced materials like CF filaments, 3D printed jigs and fixtures and tooling last longer and perform better — especially in terms of long-lasting durability. You can learn more about replacing high-cost CNC milling with agile, cost-saving solutions for low-volume production here.

Automotive and Aerospace Industries

The design freedom of carbon fiber allows you to realize complex geometries that are not cost-effective with traditional methods. This design freedom enables you to rapidly iterate and then, due to its increased stiffness and temperature stability, create more functional prototypes. The enhanced aesthetics of the object, including complex curvature achieved with 3D printing and better surface quality with CF filaments, can open up innovation in automotive, aerospace, and other related industries.

hitemp_vs_pa12cf

BigRep PA12 CF and HI-TEMP CF

BigRep offers two carbon-filled filaments: PA12 CF, a nylon carbon fiber, and HI-TEMP CF, a bio-based, carbon fiber-filled polymer. The critical difference between these two carbon-filled filaments is that HI-TEMP CF has less demanding hardware requirements. HI-TEMP CF is applicable across multiple printers, including the ONE, the STUDIO, and the PRO, while PA12 CF is suited to industrial applications on the PRO.

If you want the best performance, then it's better to use a PA12 CF filament. PA12 CF possesses increased tensile strength, impact toughness, and heat deflection temperature, making it well suited to applications requiring superior durability and operational lifespan in challenging industrial environments.

The trade-off for HI-TEMP CF's higher stiffness, flexural strength, and less demanding printing requirements - compared to PA12 CF - is a slight reduction of impact toughness and heat deflection temperature. This makes it better suited to applications not exposed to impact but which maintain the need for dimensional stability under loading. This increased stiffness and flexural strength is provided by HI-TEMP CF.

No matter which filament you pick, taking advantage of the many benefits of carbon fiber-filled materials empowers you to increase the performance of your applications. Although specifically made for large-format printing on BigRep machines, these materials are compatible with most 2.85mm open printers with a hardened nozzle.

PA12 CF

Stiff and Strong Carbon Fiber

Learn More

Conclusion

When you decide to take on carbon fiber 3D printing, you’re committing to an endeavor that requires significant attention to parameters and specialized equipment and requirements. When those conditions are fulfilled, you can produce best-in-class lightweight, durable, functional parts that can stand up to a variety of industrial uses with all the complexity in design that 3D printing has to offer. Get in touch with a BigRep expert today to learn how CF filaments can help to improve your production capabilities.

Want to learn more?

Watch the on-demand webinar to learn about:

  • What is carbon fiber-reinforced material?​
  • What are the best applications for carbon fiber?
  • Tips and tricks for printing with carbon fiber​

INDUSTRIAL QUALITY MEETS  COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

INDUSTRIAL QUALITY MEETS COST EFFICIENCY.
COMPLEX PARTS IN LARGE SCALE.

The BigRep PRO is a 1 m³ powerhouse 3D printer, built to take you from prototyping to production. It provides a highly scalable solution to manufacture end-use parts, factory tooling or more with high-performance, engineering-grade materials. Compared with other manufacturing and FFF printing solutions, the PRO can produce full-scale, accurate parts faster and at lower production costs.

Explore the PRO

Cookie Consent with Real Cookie Banner